UT D
UT Dallas

Software Quality and Software Testing

Part 3 - Defect Containment
Part 4 - Measuring Software Structure
Part 5 - Measuring Software Complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics

ut D Dennis J. Frailey

Retired Principal Fellow - Raytheon Company

PhD Purdue, 1971, Computer Science
Assistant Professor, SMU, 1970-75
Associate Professor, SMU, 1975-77

(various titles), Texas Instruments, 1974-1997;
Raytheon Co. 1997-2010
Adjunct Associate Professor, UT Austin, 1981-86
Adjunct Professor, SMU, 1987-2017
Adjunct Professor, UT Arlington, 2014-present

Areas of specialty: software development
process, software project management,
software quality engineering, software metrics,
compiler design, operating system design, real-
time system design, computer architecture

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D

Part 3

Defect Containment
(Phase Containment)

Copyright 2020, Dennis J. Frailey Software Testing Topics

Il pDefect Containment (Phase Containment)

This requires that you collect additional information
about each defect you discover during an inspection

or as a result of a test:

- In what phase of development was the defect created?

Defects Phase Containment / Leakage

— In what phase was it detected?

(High Severity Defects - Priority 1, 2 &3)

Life Cycle Phase Discovered

Legacy

6.7%

Requirements

15.0%

Design

15.0%

Code and Unit Test

63.3%

Integration Test

0.0%

Test

pejeulduQ aseyd 9]oh9 9y

After Test

Copyright 2020, Dennis J. Frailey

Software Testing Topics

UT D Note on Defect Containment

= There are several variations on this method

= All use the same basic data (base measures) but they use
the data in different ways

1

~

n this course we will illustrate one
of the variations on this method.
You may find others at
_ www.sei.cmu.edu Y

Copyright 2020, Dennis J. Frailey Software Testing Topics 5

Ut D Example of Defect Containment

= Suppose you detect a lot of defects during system test

= And suppose you discover that most of them occurred due
to bad design procedures

= Then you know that the best way to fix the problem is to
improve your design procedures

Copyright 2020, Dennis J. Frailey Software Testing Topics

—L In-Phase Defects

In-phase defects are those that are corrected in the
same development phase where they were introduced

- Example: a coding error that is caught and corrected
while you are writing the code, before going to system test

» Measuring in-phase defects tells you which parts of
your process generate large numbers of defects

In-phase defects are generally the
least costly to correct.

Copyright 2020, Dennis J. Frailey Software Testing Topics

S Out-of-Phase (Leaking) Defects

Out-of-phase defects are those that are detected (and
corrected) after they leave the phase where they
were introduced

- Example: a design error caught during unit test

> Measuring out-of-phase defects indicates how often
you allow defects to “leak” from the phase where
they originate

— this is a predictor of post-release failures Finding the

— and also a good help in root cause analysis <(Ultimate Cause
of a Defect

Out-of-phase defects are generally
the most costly to correct.

Copyright 2020, Dennis J. Frailey Software Testing Topics 8

UT D Defect Containment Analysis
Step 1 - Collect the Data

Track Each Defect and Record Phase of Origin

Defect Report

Description

Phase where found

Phase where introduced ____

Priority Type

Estimated Cost to Fix

etc. 7

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D Defect Containment Analysis
Step 2 - Record and Display the Data

Defect Containment Matrix — Sequential Process

Phase
where
Defect
was
Detected

Copyright 2020, Dennis J. Frailey

Phase where Defect was Inserted

POST
RA | PD | DD |C&T| I&T | REL.
This h
RA| 15 shows the
op| 12 | 55 data at
the end of
pDD| 42 | 8 23 the C&T
ca&Tl 15 3 8 17 phase J
I&T
POST
REL.

Software Testing Topics

10

UT D Defect Containment Analysis
Step 2 - Record and Display the Data

Defect Containment Matrix -— SCRUM Process

Scrum
where
Defect
was
Detected

Copyright 2020, Dennis J. Frailey

Scrum where Defect was Inserted

POST
S1 | S2 | s3 S4| S5 | ReL
This)
S1| 15 shows the
so| 12 | 55 data at
the end of
s3| 42 | 8 23 the 4th
sa| 15| 3 | 8 |17 SCRUM
S5
POST
REL.

Software Testing Topics

11

UT D Defect Containment Analysis Step 3 -
Using the Data

If you see many out-of-phase defects in a specific cell,
you can narrow down the source of defects

Phase where Defect was Inserted

POST
RA | PD DD C&T| 18T | g

RA| 15 A lot of defects are created
Phase op | 12 55 during preliminary design
where — -

Defectwas | pp |(42)] 8 | 23
Detected ca1l 15 | 17
1&T A lot of defects originate during requirements
POST| analysis but are not detected until detailed design
|_REL.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 2

il Defect Containment Analysis Step 4 -

Using the Data to Provide
Additional Insight

Over time, you can correlate
= the number of defects in the matrix
= to the number of failures found by the customer

> You can use this to predict and ultimately to
manage the number of failures

{ A method for doing this will be shown briefly in today’s lecture]

Copyright 2020, Dennis J. Frailey Software Testing Topics

13

UT D Observations on This Method

1. Definition of a defect must be adhered to in a
consistent way across the project and, preferably,
across all projects in an organization

- Some projects may resist defining defects the same way as
other projects.

2. As shown, there is no distinction by type or
severity of defect

— But this distinction can also be made if the original data are
good enough)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 4

A Key Lesson Learned from Measuring
Defect Containment

If you detect and correct defects early, it greatly
reduces cost and reduces post-release failures (i.e.,
those seen by the customer)

60

50 -+ - mmmmsm Requirements t
mmmm Design /

mmmmmm Code

N
(@]

Cost Impact
w
o

N
o

| 4
—_—

Requiremen ts Design Code

s}

o

—
Test

Defect Detection/Correction Phase

Dau.dodlive.mil

> But this requires very good understanding of
requirements and of customer “care-abouts”

Copyright 2020, Dennis J. Frailey Software Testing Topics

15

UT D Contained and Leaking Defects

Phase of Injection

Copyright 2020, Dennis J. Frailey

RA [PD |DD |CAUT|I&T |Post Rel

RA 15
“ £ In-phase or Contained
5 21pD 12 [55 |« |
2 £/pDD 22 | 8 | 23
a AN

C&UT 15 3 8 17

I&T \{ :

Post Rel Out-of-phase or Leaking]

Software Testing Topics

16

UT D Large Numbers Indicate
Software Development Process Problems

= Large numbers in any column indicate that your
development process is generating many defects in

that process phase

= A large number in a "leaking” cell means you are
also paying a lot of money for rework

This tells you where to focus
process improvement efforts

Software Testing Topics

Copyright 2020, Dennis J. Frailey

17

LI D A Typical Defect Containment Chart

Phase Originated

Phase RA PD DD CUT [1&T SYSINT |POST REL| tot
Detected
RA 730 73
PD 158 481 63
DD 19 2 501 52
CUT 15 0 12 63 o
I&T 25 4 35 321 9 39
SYS INT 4 0 7 19 4 2 3
POST REL 48 2 0 36 0 0 67 15

totall 999 489 555 439 13 2 67 25¢

Least Costly Defects are on the Diagonal

These defects are "Contained” within the step where they were caused

Copyright 2020, Dennis J. Frailey Software Testing Topics

Urp Escaping Defects are Those
Not Detected until After Release

Phase

Originated
Phase RA PD DD CuUT I&T [SYS INT| POST | total
Detected REL
RA 730 730
PD 158 481 639
DD 19 2 501 522
CuUT 15 0] 12 63 90
I&T 25 4 35 321 9 394
SYS INT 4 0 7 19 4 2 36
POST 153
REL

total] 999 489 555 439 13 2 67 2564

Escaping Defects Cost the Most of All

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D Other Uses of

Defect Containment Data

There are many uses of defect containment

= Calculating total repair cost
— By recording labor cost to repair defects

= Calculating rework cost
— Reduction in rework can be compared with
cost of prevention activities

= Organizational-level analysis
= Prediction of defects and warranty costs

= Prediction of reliability

Copyright 2020, Dennis J. Frailey Software Testing Topics

°°°°°°°°

Warranty Cost

Product Customer

Performance Expectation

Sciencedirect.com

20

UT D

Phase of

Copyright 2020, Dennis J. Frailey

Detection

Defect Repair Cost ar

Labor Cost to Repair Defects

Phase of Injection

nnnnnnnnnnn

RA |PD DD |CAUT|I&T |Post Rel
RA $1
PD $12 | $2
DD $22 | $8 | $2
C&UT |[$45| $18 | $8 | $2
T&T
Post Rel

Software Testing Topics

K detected in phase j j

Cell i,j indicates the \

@abor cost

to repair a defect

created in phase i and

21

Ut D Total Repair Cost

If you multiply the defect containment chart by the
“labor cost to repair” chart, you get total repair cost

e —

| Cell-wise
multiplication

Defect Cost to Total
Counts Repair Repair Cost

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D Total Repair Cost Example Js

nnnnnnnnnnn

Phase of Injection

RA |PD |DD |CAUT|I&T |Post Rel

RA 15
* Cell i,j indicates the \

PD $144 | $110
abor cost
NS Ceralye

484 | $64 | $46
$ $ ’ to repair all defects

Phase of
Detection

CAUT | 675 | $54 | $64 | $34
T&T
Post Rel

created in phase i and

\ detected in phase | /

Copyright 2020, Dennis J. Frailey Software Testing Topics 23

UT D

Phase of

Detection

Rework Costs Are
The Portion Of the Prior Chart
That Are Not On The Diagonal

Phase of Injection

RA |[PD |DD |CAUT|I&T |Post Rel
RA $15
PD $144 | $110
DD $484 | $64 | $46
CAUT | s675 | 454 | $64 | $34
T&T N
Post Rel Costs of f-diagonal are rework costs

Copyright 2020, Dennis J. Frailey

Software Testing Topics

24

—L This Concept Applies
Throughout the Product Lifetime |- —

You can track repair cost and rework cost

during development /fr\
and e
after delivery to the customer

= You can further break defects down by characteristics:
— Phase of Development where Defect Occurred
— Severity
— Importance to Customer
— Cost to Repair
— Time to Repair
— Which Part of the Software was Responsible

Imgkid.com

Copyright 2020, Dennis 3. Frailey Software Testing Topics 2 5

Sl This Can Help You Justify
Process Improvements s T

Rework costs are the equivalent of “software scrap”

= If you can reduce scrap by investing in defect
prevention activities, you can save a lot of money
(see earlier modules)

= If you make an improvement in your development
process, you can use the defect containment chart to
show the savings in reduced repair cost

= And you can use the chart to determine which parts
of the process are most important to improve

Copyright 2020, Dennis J. Frailey Software Testing Topics 26

Urp Analyzing Defect Data at the
Organizational Level

= By collecting data from many projects, we can show
historical costs for rework

= And we can also show patterns of defect containment

Organization
Data

Project Project Project
A Data C Data | ' N Data

Copyright 2020, Dennis J. Frailey Software Testing Topics

Uur D Organizational Analysis of Defect
Containment Data
Analysis of defect containment data for many projects

over a period of time
may show such organizational information as:

— Most frequent types of defects

— Most costly defects

— Time required to fix defects

— Process steps generating the most defects

— Which design standards help or hurt defects

f Typically we collect the data needed for

statistical process control:

\averages, ranges, distributions, maximum, minimum, etc.)

Copyright 2020, Dennis J. Frailey Software Testing Topics

28

Ur D Example: Determining an
Organizational Process Metric

Defect —
Data from

SA/SD |
Projects

|
SA/SD Defect Pattern

Copyright 2020, Dennis J. Frailey

Defect T T T T
Data —
from OO ﬂ

Projects

OO Defect Pattern

Software Testing Topics 29

UT D

Overview of the Cost Data Collection

Process for an Organization

Historical Project Data
Hours/Defect

PD | DD [cuT[1&T|

ﬁ

4 2
D 6 [4
CUT|[8 6
10 |

Z
4 2
6

2 |

Compare with Your
Current Experience
PD [DD [cuT[I&T|

2 —

RA
A 2
D

D
CUT
&T

o o O N

| 6] 42|

So—=+p0Qa-—0<

Analyze each table

Combin ject Dat
ombine project Dara entry for mean, std dev..

for each table entry.

L
H‘:g.lrs Table entry (I,J)
Expended
— Show a distribution
for each cell.
Count
Expected range of
Defect History in values for each
Hours/Defect table entry.
e Hir o
h 21 Cc22
IC31 | C32 C33 h l‘l'
41 | C42 (C43 C44 l,l,
(s [Cs2 [cs3 |csa [css | '2’0- =)
TABLE ENTRY (I.J)

COST CAPABILITY MATRIX CAPABILITY

Out of Range Her'e!]

Copyright 2020, Dennis J. Frailey

30

Software Testing Topics

UT D Before We Discuss Additional Uses of
Defect Containment ...

We need to introduce a special distribution that we haven’t
seen before

[Poisson Distribution]

0.40
@
035} ¢
0.30F |
< 0.25}
>IL 0.20+
- %\
0.15} d .-.,‘
o10f /| e %y
® | X
005t / 2 % o,]
® po g \ 0.

Copyright 2020, Dennis J. Frailey Software Testing Topics
31

UT D
Contents

= Applications of Defect Containment
> Poisson Distributions

= A Model for Predicting Defect Levels and
Associated Costs, Using Defect Containment

= Predicting Reliability

= Measuring the Cost of Defect Removal

Copyright 2020, Dennis J. Frailey Software Testing Topics

32

Recall We Introduced Distributions in
the Previous Lecture

N\

Normal Distribution

Uniform Distribution

Cauchy Distribution

t Distribution

/S

AN

(Chi-Square Distribution

Exponential Distribution

Weibull Distribution

F Distribution

_

N

N

Lognormal Distribution

Bimbaum-Suanders
(Fatique Life) Distribution

Gamma Distribution

Double Exponential
Distribution

A\

Power Normal Distribution Power Lognormal Tukey-Lambda Distribution

Distribution

Copyright 2020, Dennis J. Frailey

/

We mentioned
that there are
many

distributions that

correlate to

\ actual data. /

\

_

Today we will
introduce the
Poisson
distribution

~

J

Software Testing Topics

33

Ut D Exponential Distribution Formula

You may be familiar with the exponential
distribution function:

Exponential f(t) = Ae M

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D Poisson Distribution Formula

Poisson distribution has a similar formula:

Exponential f(t) = Ae M
Poisson | f(1) = Ate* / tlI

t! = t factorial (1°2*...*t)

(Poisson distribution is only defined for\
positive integer values of t

For Poisson distributions, 1 is the

_ average or mean value of t y

Copyright 2020, Dennis J. Frailey Software Testing Topics

35

UT D Uses of Poisson Distribution

= Exponential and many other distributions are
used for situations where

the independent variable (t) is continuous
— t can be any value or any non-negative value
— such distributions are often used for estimating

when an event will occur
such as when a failure or defect will occur

= Poisson distribution is used for situations where
the independent variable (t) is a discrete,
positive integer
— Often used for predicting the number of events (for

example, number of failures or defects) that will
occur in a given time period

Copyright 2020, Dennis J. Frailey Software Testing Topics
36

Uur D Poisson Formula is Often Written
Using the Letter k rather than t

To suggest an integer value

f(k) = Ake? / k!

k is a number of occurrences

f(k) is the probability that an event (such as a
failure) will occur k times

Copyright 2020, Dennis J. Frailey Software Testing Topics

37

UT D

0.40

Poisson Distributions

0.35}
0.30}
= 0.25}
% 0.20}
5
0.15}
0.10}

0.05} /

0.00

Copyright 2020, Dennis J. Frailey

o o O
D D D
|
e

Software Testing Topics

k (horizontal axis)
is number of
occurrences

P(X=k) (vertical
axis) is the
probability that an
event will have
the indicated
number of
occurrences

38

Ut D Advantages of Poisson Distribution

Poisson distributions are often used for situations
where occurrences are discrete, independent and
relatively uncommon

Benefits:
— Relatively un-restrictive assumptions

— Relatively straightforward derivation and a relatively
simple model

- Among other things, the mean = the variance, which
simplifies many calculations

Thus Poisson distributions are widely
used in software reliability modeling

Copyright 2020, Dennis J. Frailey Software Testing Topics 39

Sl A Practical Note about Calculating
Poisson Distributions on a Computer

£(k) = Ake / K

> If k is large, both Ak and k! may be very large numbers

— This may lead to overflow or underflow and, thus, highly
inaccurate/unstable calculations

4 ™
This is a good example of a common situation on

computers: what is simple mathematically may not be
so simple to implement on a computer

.

Copyright 2020, Dennis J. Frailey Software Testing Topics 40

ur D A Mathematically Equivalent But
Computationally More Stable Equation

On a computer, you may want to compute the
Poisson distribution in this fashion:

f(k) = exp{k In & - & - In B(k+1)}

Where is the "gamma function”

In Excel:
GAMMA() is the gamma function: [21()

GAMMALNY() is the natural logarithm of the gamma function:

In 2I()
In MATLAB: gammaln()
In C standard library: Igammal()

Copyright 2020, Dennis J. Frailey Software Testing Topics

41

UT D
Contents

> A Model for Predicting Defect Levels and
Associated Costs, Using Defect Containment

Copyright 2020, Dennis J. Frailey Software Testing Topics

42

We Can Predict Rework and Other Costs
from Defect Level

= A predictive model, to be introduced in the next several
slides, relates future defect levels to defect
containment values

For a given project or group of similar projects, we can
predict future defects and rework cost

as a function of

the defect level achieved during software development

= The model can be applied early in development and
continually refined as development proceeds

» S0 you can spot potential trouble early

Copyright 2020, Dennis J. Frailey Software Testing Topics

43

Uur D Predicting Quality
A Model Based on Defect Containment

Assumption:
We have a software development process with N phases

L; = the number of defects introduced in phase i

Other Assumptions:
1. L; has a Poisson distribution with mean A;

2. L; and L; are independent for i [j.

Copyright 2020, Dennis J. Frailey Software Testing Topics 44

UT D
Continuation of the Model

Ki; = the number of defects detected in phase j
that originated in phase i

For additional information on this model, see
Hedstrom and Watson in the Reference List

Copyright 2020, Dennis J. Frailey Software Testing Topics

45

uUT D

The Model

Phase of Injection

RA |[PD |DD |CAUT|I&T

RA K11

« S|PD Kiz | Koz

O =

§ SIpD Kis | K23 | K33

x A C&UT Kia | Kea | K34 | Kaa
I&T Kis | Kes | K35 | Kas | K5
TOTAL | Lt L2 | L3 L4 L5

Copyright 2020, Dennis J. Frailey

Software Testing Topics

UT D
More of the Model

P;; = the probability that a defect introduced in phase i
will be detected in phase j

Assumptions:
The detection forms a Bernoulli process

[in other words, a software development process where
the individual steps are independent from each other]

and

Detection of one defect is independent of others

Copyright 2020, Dennis J. Frailey Software Testing Topics

47

UT D Distribution of Detected Defects

It can be shown that K;; has a Poisson distribution
with mean A;P;;. [Rross, 1993]

It can also be shown that the number of defects
leaking from the phase where they were
introduced, L; - K;;,

has a Poisson distribution with mean 2;(1-P;;).

Reminder: A Poisson distribution is a common assumption
when dealing with discrete, independent and relatively rare
events. For more on this see Ross or Knuth in references.

Copyright 2020, Dennis J. Frailey Software Testing Topics

48

Distribution of Detected Defects (continued)

In general, the number of phase i defects detected in
the jth phase (i.e., Kj;)

has a Poisson distribution with mean:
(1-P;i) * (1-Pjiy1) *... ¥ (1-Pj5.1) *PisA

--

0.16 - 7 i \

Ry - It might

‘I] look

010 | SOmething

o —_ like this
AN

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Copyright 2020, Dennis J. Frailey Software Testing Topics 49

UT D Distribution of Escaping Defects

Let Li* == Li - EKU [j=1..N] be

the number of step i defects not detected by the Nth step
of the process

(i.e., the number of escaping defects from step i)

Copyright 2020, Dennis J. Frailey Software Testing Topics

50

- Distribution of Escaping Defects

(continued)

It can be shown by induction that L, has a Poisson
distribution with mean:

7\4* —_)"i I1 (1-PIJ) [j=1..N]
which we can rewrite as:

7\4* = ai}\.i
where a; = I1 (1-PI_]) [j=1..N]

Copyright 2020, Dennis J. Frailey Software Testing Topics

51

urt D Total Escaping Defects

L* = X L* [i=1..N]

is the total number of escaping defects.

It has a Poisson distribution with mean:

AY = 2 7"i* —_— 27\1]._.[(1-PIJ) —_— 2 aili [i=1..N]

Copyright 2020, Dennis J. Frailey Software Testing Topics

52

UT D

Leaking and Escaping Defects

Escaping><

RA |[PD |DD [CA&UTII&T
RA \\@1
PD Klz\\gz

N

Le;}(';g\ K13 | K23\K33
C&U | | k14 | K24 | K3\ K44
T&T K15 | k25 | k35 | k4Bl k55
TOTAL | L1 |12 113 L4 L5
Rl
Escapind L1* | L2* | L3* | L4* | L5* [Bum=L*
e i

Copyright 2020, Dennis J. Frailey

Software Testing Topics

53

UT D Total Detected Defects

It can also be shown that K; = X~ K;; [j=1..N],

[the total nhumber of defects from stage i which were
detected]

has a Poisson distribution with mean and variance given by:
Mean (K;) = aj\; 2(P;;/b;;) [§=1..N]
Var (K;) = ajz; X(Pj;/by;) [§=1..N]
where b;; = IT (1-P;) [k=j..N]

(mean = variance because Poisson)

Copyright 2020, Dennis J. Frailey Software Testing Topics

54

UT D

Estimating Escaping Defects

hence the);* and *.

Maximum likelihood estimators for the), are given in

The K; form a sufficient statistic for estimating the); and

[Hedstrom and Watson, 1995], along with additional details

of the model and its derivation.

4 The point is that The
we can estimate escaping defects “:mbe;s 'n
as a function of measurable data, c(tmi::z;z;t

nhamely the K; and the P;;. matrix)

Copyright 2020, Dennis J. Frailey Software Testing Topics

55

UT D

Defect Predictive Engine

Uses of the Model

= The defect predictive engine is a spreadsheet that
— uses the formulas on the previous slides
— to relate the final escaping defect level

— to the numbers in the defect containment chart

= The engine predicts final defect level, given
estimated or actual defect levels

Stage Detected

Stage Originated

System

Requirements | Desig fl(:\li‘teTir;? Integgﬁon SW_lgesu?Iity Integration Mainz’xa nce Total
and test

Requirements 1,515 1,515
Design 1,181 1,555 2,736
Code and Unit Test 402 912 2,421 3,735
SW* Integration 200 420 1,525 37 2,182
SW Quality Test 191 223 370 7 1 792
System Integration

and Test 89 14 14 5 0 10 332
SW Maintenance 0] 0 0] 0 0 0
Total 3,578 3,224 4,430 49 1 10 0 11,292

Semanticscholar.org

Copyright 2020, Dennis J. Frailey

—)

Software Testing Topics

DEFQ&‘

Dreamstime.com

56

You Can Manage the Process to Achieve a
Desired Defect Level (Predicted)

1. Start with historical data

— Populate the defect containment chart with historical
averages from your organization

— Predict the escaping defects, using the formulas in the model

2. Augment with actual data

— As the development project proceeds, replace the averages
with actual project data

— Recompute the predicted escaping defect levels
— If the levels are too high, refine the process, such as:
= More rigorous inspections, testing and peer reviews

= More careful development practices
= Etc.

— Repeat

Copyright 2020, Dennis J. Frailey Software Testing Topics

57

Ur D Example: Quantifying the Warranty
Cost for a Software Product (1 of 3)

Consider a software product
with a predicted number of defects.

Require- |Prelim. |Detailed |Code & |Integ.
ments Design | Design Unit & Test

Test
Predicted | 16 19 16 16 1
Defects
Escaping

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ur D Example: Quantifying the Warranty
Cost for a Software Product (2 of 3)

Consider a software product
with a predicted number of defects.

> Estimate the potential cost of warranty work
(labor hours * $xx/hr.).

Require- |Prelim. | Detailed |Code & |Integ.
ments Design | Design Unit & Test

Test
Predicted |16 19 16 16 1
Defects
Escaping
Predicted | $23.4 |$47.9|$27.1 |$22.5|4$30.0
Repair
Cost ($K)

Copyright 2020, Dennis J. Frailey Software Testing Topics 59

Ur D Example: Quantifying the Warranty
Cost for a Software Product (s of 3)

Consider a software product
with a predicted number of defects.

> Estimate the potential cost of warranty work
(labor hours * $xx/hr.).

Require- |Prelim. |Detailed |Code & |Integ. |Estimated
ments Design | Design Unit & Test |Warranty
Test Cost)

Predicted [16 [19 |16 |16 |1 Total the
Defects V warranty
Escaping estimates
Predicted |$23 .4 |$47.9|$27.1 |$22.5]|$30.0|$150.9 J
Repair
Cost ($K)

Copyright 2020, Dennis J. Frailey Software Testing Topics 60

Ut D Other Ways to Use the Information
from the Model and the Engine

= Improve defect detection

— Model/Engine shows where detection is needed and how it
will pay off in two ways:
= Reduced rework during development
= Reduced warranty cost

= Reduce defects by fixing the software
development process

— Model/Engine pinpoints where the problems are coming
from and the potential level of pay off

Copyright 2020, Dennis J. Frailey Software Testing Topics

61

UT D
Contents

= Applications of Defect Containment
= Poisson Distributions

= A Model for Predicting Defect Levels and
Associated Costs, Using Defect Containment

> Predicting Reliability

= Measuring the Cost of Defect Removal

Copyright 2020, Dennis J. Frailey Software Testing Topics

62

Ut D Defects and Reliability are Related,
Although Not Always Strongly

= As we mentioned earlier in the course, the number
of defects may or may not correlate well with
reliability

= Many studies do show that reliability is related to
defect levels in practice

o

1 HANDBOOK Qg '
1 -t -
Software
llldlallility a0
an
Testing oy
Hoang Pham
Software
Modeling and Idensfication
o
N ¥
vt ~% & Soeger Veriag
" PN S D' Berin Hedeltwry Gt
Copyright 2020, Dennis J. Frailey Software Testing Topics

63

UT D
Capers Jones’ Data

Defects per KLOC| Reliability (MTTF)
i0-20

24 hours

1-2 24-160 hours

See references.
Assembly language code written in the 1970's.

Copyright 2020, Dennis J. Frailey Software Testing Topics

ur D Escaping Defects and Reliability

Musa [see references] has shown a simple reliability
model that requires an estimate of escaping defects.

}\.0 — fK(DO
Ao is the failure rate
f is the rate at which the software is used

K is a small constant indicating which portion of faults
are visible as failures

0o is the escaping defect level.

So we could use the defect containment
model to predict reliability.

Copyright 2020, Dennis J. Frailey Software Testing Topics 6 5

Ut D In Your Own Organization ...

= Capture data to correlate
defects with reliability or
repair costs

Software Reliability Modeling

Failure Rate A

= Find a model, such as
Musa’s, that fits your data

= Use to predict reliability or
repair costs

Present)
\ Additional Time /

Testing Time

Slideplayer.com

Copyright 2020, Dennis J. Frailey Software Testing Topics

66

UT D

Part 4

Measuring the Structure of a
Program

Copyright 2020, Dennis J. Frailey

Software Testing Topics

67

UT D

Contents

Introduction

Some Popular Structure Metrics
Cohesion and Coupling

— Coupling

— Cohesion

Measures of Data Flow

Copyright 2020, Dennis J. Frailey Software Testing Topics

68

UT D

> Introduction

Contents

© Can Stock Photo - csp12990258

Copyright 2020, Dennis J. Frailey

Software Testing Topics

69

UT D

Possible Goals for Measuring
Software Structure (1 of 5)

To identify and admire the beauty of its
architecture?

That's really
beautiful code!

Beautiful
SOFTWARE

Copyright 2020, Dennis J. Frailey Software Testing Topics

70

UT D

Possible Goals for Measuring
Software Structure (2 of 5)

To help us identify structural approaches that are more
successful than others

— Less error prone
— Easier to test

— Easier to understand

— Easier to maintain

Buildable &1
MN

Copyright 2020, Dennis J. Frailey Software Testing Topics

71

uT D Possible Goals for Measuring
Software Structure (3 of 5)

To help us estimate the effort to produce the software

Testing Analysis
° . 0, Q,
Estimating o% (g

SOFTWARE e

COSTS 20%
BRINGING REALISM TO ESTIMATING

Second Edition

Coding
X Bl sl idera 30%

methods that fit your needs

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D Possible Goals for Measuring
Software Structure (4 of 5)

To help us estimate the quality of the software

Are the required . . A SRIT How reliable is
functi ilable
A Functionality Reliability [eisatamed:
/ Software \
i . gl How easy is to trasfer
bseeall Usability Quality LIELTL the sotvare to anher
\ Factors /
Hi is to mod . . HH = : How efficient is
Hbenietlbal Maintainability Efficiency [Rivaieia

Copyright 2020, Dennis J. Frailey Software Testing Topics

73

Ut D Possible Goals for Measuring
Software Structure (s of 5)

To help us devise a more effective test plan for the
software

Software Testing Abilities

Test
Management

Functionality
Testing

1§/ Software (

Security | 3 User Experience
Testing Testing Testing
Compatibility Performance &
Testing Load Testing
Copyright 2020, Dennis J. Frailey Software Testing Topics

74

UT D Does Structure Relate to These Things?

Intuitively, we believe that the structure of the
software relates to its quality and to the effort required
to develop, test and support it:

— Ease of programming

— Ease of understanding

— Ease of testing and maintaining

So our information needs tend to be things like:

— What aspects of software structure can help forecast
development effort and quality?

— How should I test this software?
- How can I improve my software structure?
— How much has it improved?

Copyright 2020, Dennis J. Frailey Software Testing Topics 7 5

Ut b How Can We Measure Software
Structure?

Many have attempted to devise ways of measuring
structural aspects of software to see if they can show
more specific relationships

— For example

= Halstead’s attempt to define programming difficulty and level of
the language

= McCabe’s complexity measures (to be discussed later)

In this lecture we will explore several of the most
frequently cited and used methods of measuring
software structure and talk about their effectiveness

Copyright 2020, Dennis J. Frailey Software Testing Topics

76

There are Many Things We Could Measure

= Each Level of Abstraction has different Elements to
Measure

— Statement, function, method, class, package, sub-system,
system

= We must understand how to describe each Element
Measured

— Syntax and semantics of the language or notation used to
represent the software

= Eventually, we must measure attributes of individual
components or elements of the design, code,
requirements model, etc.

Copyright 2020, Dennis J. Frailey Software Testing Topics

77

Flow Can Also be Measured

= Control Flow

— The sequence in which things

happen

= Loops, parallelism, conditional

execution, etc.

= Data Flow

— The trail of the data as it flows

through the program

Copyright 2020, Dennis J. Frailey

PINQ PHP Framework Control Flow

index.php }
Iniut
pinq()
Package Loader
Config Loader

yield()

Yield Resource

Commands Command
Capture

CCT™M

Telemetry
Output

Executive
e]
=
= Other
@ Elements

Other TM

Command Timeline
A /- Executive
Y Command /

Software Testing Topics

78

ur D Contents

| | Fan-Out/Fan-In
> Some Popular Structure Metrics e~

. el

Copyright 2020, Dennis J. Frailey Software Testing Topics

79

—L Structural Fan-in and Fan-out

= Fan-in - the number of parent modules (the number of
modules that call or utilize this module)

— Goal: high fan-in at the lower levels of the hierarchy, such as
procedures

= Fan-out - the number of subordinate modules (the
number of modules that this module calls)

— Goal: fan-out should be no higher than 7 8 2 (5 to 9).
— This is based on studies of human psychology

Copyright 2020, Dennis J. Frailey Software Testing Topics

80

ur D Contents

» Cohesion and Coupling

» Coupling

Copyright 2020, Dennis J. Frailey

Software Testing Topics

81

Coupling of Modules or Methods -- Overview
= Coupling refers to the degree of independence of a
program module or method.

— If measured for a single module, it indicates the extent to
which the module can function (or be understood) without
the use of other modules

— If measured for a pair of modules, it indicates the extent to
which the two modules depend on each other

= Goal:

— Low or loose coupling is associated with readability, testability
and low maintenance cost

— Tight coupling is associated with testing difficulty and high
maintenance cost

[The original concept was developed by Stevens, et. al. (see references)]

Copyright 2020, Dennis J. Frailey Software Testing Topics 8 2

ur D Coupling Diagrams

Loose Coupling

Cohesivs abjeets 4o one thing,

A % END Tl
| SHT
l?SS lwlcrdePEnolaMLj Mere ;hivderudq ne

less co-ordinafy g

Less infurmation few, Ware €0-or dipafiod

- /“”’“‘. Mare (nfur Mahin Moy,
nc_-./ _///\M—M‘/ DATA _ S7TAMP - C o “T:z;l:: CoMMeN - CourenT
— ')\ 4 i - N
| Coupling describes how much the
R modules or methods depend on
ceompamasson L other modules/methods.)

Copyright 2020, Dennis J. Frailey Software Testing Topics 83

uUT D

Disadvantages of Tight Coupling

Assembly / compiling of modules or methods may be
more complicated and take more time, because you
have to assemble / compile all of the affected ones

Testing of a module or method is harder
— It involves interaction with other modules

Changes to one module or method affect other modules
or methods

— Consequences of a change are easily overlooked
— It is harder to test the consequences of a change

Reuse of a module is more error prone

Software performance may be affected due to the
overhead of message/parameter passing and
interpretation

Copyright 2020, Dennis J. Frailey Software Testing Topics 84

Degrees of Coupling (Myers’ Classification)

En.Wikipedia.org

Copyright 2020, Dennis J. Frailey Software Testing Topics

85

UT D

Degrees of Coupling Defined (slide 1 of 2)

From tightest to loosest (Myers’ classification)

Content coupling: one module modifies or relies on the
internal data or other workings of another module.

Common coupling: two modules share the same global
data. If the global data is changed in format or content, it
affects all modules that use it.

External coupling: two modules share an externally
imposed data format, communication protocol or device
interface.

— For example, both use the same communication interface

Control coupling: one module controls the flow of another,
by passing it information on what to do (such as a flag).

Copyright 2020, Dennis J. Frailey Software Testing Topics

86

Ut D Degrees of Coupling Defined (silide 2 of 2)

From tightest to loosest (continued):

= Stamp coupling (data structure coupling): modules share
a composite data structure and use different parts.

= Data coupling: modules share data through parameters or
other means.

- For example, a subroutine call

= Message coupling: modules communicate by message
passing.
— This is the loosest form of coupling

= No coupling: modules do not communicate with each other.

These degrees were proposed by Myers in Stevens, et. al. (see references)

Copyright 2020, Dennis J. Frailey Software Testing Topics

87

Ut D Coupling Measures for OO Designs

= There are three categories of coupling for a class
— Afferent coupling: The number of responsibilities
— Efferent coupling: The number of dependencies
— Total coupling: Afferent coupling + Efferent coupling
= And there’s a measure computed from coupling info
— Instability: The ratio of efferent coupling to total coupling

= Other forms of coupling have been defined

— Different design methodologies may have different forms of
coupling

See Fenton, section 9.4.1 for
further examples and details

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D How to Measure Coupling
(slide 1 of 2)

There are many proposed methods of measuring
coupling, varying somewhat with the kind of
programming and other factors

For procedural languages, Stevens et. al. proposed the
following formula for measuring the coupling of a single

module or method:

— For data and control flow coupling:
= d; = number of input data parameters
= ¢; = humber of input control parameters
= d, = number of output data parameters
= ¢, = humber of output control parameters

— (continued on next slide)

Copyright 2020, Dennis J. Frailey Software Testing Topics

89

UT D

How to Measure Coupling
(slide 2 of 2)

— For global coupling:
= g4 = humber of global variables used as data
= g. = number of global variables used as control

— For external coupling:
= w = number of modules called (fan-out)

= r = number of modules calling this one (fan-in)

Formula for coupling:

- C=1 -

1
d+2c; +dy+2c,+tgq+2g.+w+r

— A large value indicates tight coupling

— Loose coupling -> .5-.7; tight coupling -> .9-1.0

Copyright 2020, Dennis J. Frailey

Software Testing Topics

90

Fenton and Melton’s Measure of Coupling?
for a Pair of Modules or Methods

C(xy)=1+n/(n+1)
— X and y are modules or methods
— n = the number of interconnections between x and y

— I = the level of the tightest coupling between x and y

= | = 5 for content coupling
= i =4 for common coupling
= | = 3 for control coupling

= | = 2 for stamp coupling

= | = 1 for data coupling

= | = 0 for no coupling

' Fenton and Melton (see references)

Copyright 2020, Dennis J. Frailey Software Testing Topics 9 1

UT D Observations on Coupling

There are many studies that suggest tight coupling is
associated with higher cost, higher error rates, and
greater difficulty in developing, testing and maintaining
software

However there are many variations on exactly how to
measure coupling

4 This is an example of the kind of situation where the engineer N
finds something that works and uses it whereas the researcher
spends countless hours trying to define a superior approach.

Advice: always use common sense. Don’t put blind trust in any
_ measurement that is as imprecise as this one.)

Copyright 2020, Dennis J. Frailey Software Testing Topics
92

UT D Use of Coupling in
Real Software Development

= As a principle of good design, programmers should
always seek to have loose coupling.

= When coupling is needed, programmers should
always document what modules are affected by any
messages, variables, parameters, etc.

= Measurements of coupling can help you identify areas
of the code that should be redesigned or refactored
to make them simpler and less coupled, if possible.

= Identifying the degree and nature of coupling can
help you define more appropriate test approaches.

Copyright 2020, Dennis J. Frailey Software Testing Topics 9 3

ur b Contents

» Cohesion and Coupling

> Cohesion

Copyright 2020, Dennis J. Frailey Software Testing Topics

94

ut b Cohesion

Cohesion refers to how well the parts of the module or the
methods of a class relate to each other.

— A module/class is cohesive if all of its functions are closely related
to each other.

Cohesion is desirable because it is easier to understand the
module or class if there is a single, unifying theme for what it

does.
— The module or class makes sense as a meaningful unit

— Various functions related to that theme would tend to use the
same terminology, have the same sorts of exceptions, the same
data types, and the same sorts of errors.

Most work on cohesion has been focused on object oriented methods rather
than procedural methods.

Copyright 2020, Dennis J. Frailey Software Testing Topics

95

Ut D Evaluating Cohesion

A simple way to judge cohesion is to determine how
succinctly the module can be described.

— A short and precise sentence generally describes a cohesive
module.

= "This module handles input/output”
= The above module could easily have a descriptive name, such as
“InputOutputFunctions”

- A longer and less precise sentence suggests a non-cohesive
module.

= "This module factors the data, performs various services
and handles the I/0”

= Words such as “various” and “assorted” and “variety” in the
description are typical of hon-cohesive modules

Copyright 2020, Dennis J. Frailey Software Testing Topics

96

UT D Example

LCOM4 =2 LCOM4 =1
LOW COHESION HIGHER COHESION
This module or class has two This module or class has
separate functions or groups functions or methods that are
of methods that are unrelated. strongly related
Copyright 2020, Dennis J. Frailey Software Testing Topics

97

Ut D Advantages of Cohesion

= If you need to replace part of the module or class it
is likely that you will replace most or all of it

— So you can simply replace the whole thing rather than
removing parts of it and leaving other parts alone

- You avoid inadvertently damaging one part while modifying
another part

= Interfaces to cohesive modules tend to be cleaner
and more coherent

= High cohesion promotes encapsulation
— Placing of related data and functions into a single component

= Low cohesion generally means inappropriate design
with high complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics

98

UT D Observations About Cohesion

Generally speaking, high cohesion and low coupling
tend to go together

— But not always

Cohesion of a class may mean that the methods in
that class are strongly coupled, which may make it
harder to test and maintain

— This is a potential drawback, which illustrates why one
should not always insist on high cohesion

Cohesion of a procedure has similar drawbacks
regarding its internal components.

Copyright 2020, Dennis J. Frailey Software Testing Topics
99

UT D How to Measure Cohesion

Various metrics have been proposed, under the name
“Lack of cohesion metric” or LCOM. Most make more

sense for OO0 software.

LCOM1: This is measured for two methods in a class or
two separate sub-functions of a procedure

Let P = The number of disjoint sets of variables accessed by
the two methods/sub-functions

Let Q = 1 if the two methods/sub-functions access at least one
common variable; otherwise, Q = 0

LCOM1 = P-Q
If P = 0, the methods/sub-functions are cohesive
If P > 0 they are not, and could be separated.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 00

UT D Drawbacks of LCOM1

= Makes more sense for pairs of methods than for
classes

= Only one value (LCOM1 = 0) is defined for cohesive
situations, which means it doesn’t measure the
“degree of cohesiveness”

= The definition doesn’t account for certain classes of
global and other shared variables (details vary with
the specific 00O methodology being used)

For more on LCOM1 see Chidamber and Kemerer in reference list.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 1

UT D LCOM2 and LCOM3
Both measure the degree of cohesion

m = the number of methods in a class or sub-procedures in a procedure
a = the number of variables or attributes in a class or sub-procedure

mA = the number of methods that access a specific variable or attribute
A

Sum(mA) = sum of the mA values for all attributes or variables

LCOM2 = 1 - Sum(mA)/(m*a)
= This ranges from 0 to 2
= 0is good, 1 is not good, 2 is very bad

LCOM3 = (m - Sum(mA)/a) / (m-1)
= This ranges fromOto 1

- 0is good, 1 is not good see Henderson-Sellers
4

in reference list.
Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 2

uTt D LCOM4

This measures the number of connected components in a
class.

— A connected component is a set of related methods (and class

level variables). Ideally there should be only one connected
component in a class.

= Two methods are related if:

— They both access the same class-level variable, or
— One of them calls the other one

= To measure LCOM4, you determine which methods are
related and draw a directed graph, showing the
relationships

We will discuss directed graphs later.

Copyright 2020, Dennis J. Frailey Software Testing Topics

103

ur D Interpreting LCOM4

LCOM4 = 1 means high cohesion
LCOM4 > 1 means lower cohesion
LCOM4 = 0 means a class with no methods

Cee
® | ®

LCOM4 =2 LCOM4 =1

Copyright 2020, Dennis J. Frailey Software Testing Topics

104

Ut D Summing Up Cohesion

= There are many measures of cohesion, including
some we have not discussed

— but none have been universally accepted
= Cohesion is a good design goal for most software

= Good cohesion often means low coupling, which is
also a good design goal

= But measures of cohesion vary in their usefulness,
depending on the design methodology and other
factors

— So use them with caution

> Lack of cohesion generally means that testing will be
more difficult

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 5

UT D Contents

> Measures of Data Flow

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 6

A Fundamental Issue with Data Flow
Measures

IEEE Standard 982.2 defines a series of informational
flow complexity measures

But the software development community has
adopted a number of variations on these

— None of these have been accepted as a standard, because
there are so many variations.

— Many of these depend on the specific methodology or
language being used

We will mention some of the differences

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 7

Ut b Measures of Data Flow

Informational Fan-in (IFIN): Information |
flow into a procedure or method

IFIN = PC + PR + GVR
PC = number of procedures calling this one

PR = number of parameters read
GVR = number of global variables read

Informational Fan-in (IFOUT):
Information flow out of a procedure

IFOUT = CP + PR + GVR
CP = number of procedures that this one calls
PW = number of parameters written to [by reference]
GVW = number of global variables written to

Copyright 2020, Dennis J. Frailey Software Testing Topics

There are several
variations on
exactly what is

— counted as

information flow
into or out of a
procedure or
method

For more info, see
Henry and Kafura
in reference list

108

Additional Measures of Data Flow - IFIO

Informational Fan-in x Fan-Out (IFIO):

IFIO = IFIN * IFOUT

— This is supposedly a good measure of the effort
required for implementing the procedure

— But it is not necessarily a good measure of its
overall complexity

= j.e., IFIO is not necessarily a good measure of how
hard it is to understand, test or maintain)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 09

UT D Additional Measures of Data Flow -
IFC

Informational Flow Complexity (IFC):
IFC = IFIO * IFIO [in other words, IFI0Z2]
— This is the IEEE standard definition
IC1 = LOC * IFIO [in other words, size * IFIO]
— This is a widely used definition of information flow complexity

> Some authors believe that IFC is a good measure of
how hard it is to understand, test or maintain the
software

Copyright 2020, Dennis J. Frailey Software Testing Topics

110

UT D Information Flow Observations

Regardless of how measured, high information flow
complexity is generally not a good thing with most
modules or methods

— Procedures or methods with high information flow
complexity are good candidates for redesign because they
may be hard to understand

— They may require extensive testing

> On the other hand, some software may be designed
to intentionally have a method or module
responsible for a large amount of information flow

Copyright 2020, Dennis J. Frailey Software Testing Topics

111

Things You Can Discover from Information
Flow Metrics

= More than one function is required to implement a
procedure (/ots of information flow between the
functions)

— Is there a good reason for this from a design perspective, or is
this a candidate for redesign?

= Stress points in a system (places where there is a lot of
information traffic)

— This may indicate parts of the software that will have
performance issues

= Excessive functional complexity

— The difficulty of implementing and testing a function due to the
complexity of what it must accomplish

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 2

UT D Functional Complexity

= This is a current research topic
= See Lavazza and/or Abran in the reference list

YOUR USER REQUIRE- | | DO YOU REALIZE THAT 600D POINT
MENTS INCLUDE FOUR | | NO HUMAN WOULD BE 1D BETTER ADD
HUNDRED FEATURES. ABLE TO USE A PRODUCT

WITH THAT LEVEL OF LA A

COMPLEXITY? TO THE LIST.

Copyright 2020, Dennis J. Frailey Software Testing Topics

113

UT D

END OF
Part 4

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 4

UT D

Part 5
Measuring Software Complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 5

LT [0 Contents

Complexity: what and how to measure

Structured Programs and Flowgraph Analysis

Measures of Complexity

Closing Remarks

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 6

Ut D Contents

» Complexity: what and how to measure

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 7

UT D Complexity

We tend to think that complex software is
more difficult to develop, test and maintain
and has greater quality problems.

But what do we mean by complexity?

Dictionary definitions of complex: = e
1. Composed of many interconnected parts N

2. Characterized by a very complicated
arrangement of parts

3. So complicated or intricate as to be hard to
understand

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 8

Ut D Complex vs Complicated

Complicated: being difficult to understand but with time
and effort, ultimately knowable

Complex: having many interactions between a large
number of component entities.

— As the number of entities increases, the number of interactions
between them will increase exponentially

— It can get to a point where it would be impossible to know and
understand all of them.

2

s

Hotel-r.net

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 9

Ut D Changing Complex Software

= Higher levels of complexity in software increase the risk of
unintentionally interfering with interactions and so increase
the chance of introducing defects when making changes.

Beoanch OFfice Corpordte “M%Md’e'"s -l?es'onal Office

T1/FTA

%:i @,Lﬁ o i @ &

u ﬁ@@rs V@ gﬁ@géﬁtl

x..\d Based '.

=9 =
Switehad LAng

T

mob e “su‘s
¥ Peld Sales

Telecoramuters
& Remote Users

Labs.Sogeti.com

= In more extreme cases, complexity can make modifying the
software virtually impossible. Changes introduce more
problems than they fix. This is called inherent instability.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 20

UT D Can We Measure Complexity?

Measures of complexity would need to address:
— the parts of the software,
— the interconnections between the parts,
— and the interactions between the parts.

Information Need
— Something that will help us estimate
— difficulty of programming,
— difficulty of testing and maintaining,
— expected level of quality

— Something that will help us evaluate and
improve our software with regard to the above
characteristics

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 2 1

UT D How Can We Measure Complexity?

The base measures
would quantify the
attributes of:

— The parts or

components of the
software

- How many parts or
components there are

— The arrangement of
the parts

— The interactions of
the parts

Copyright 2020, Dennis J. Frailey

Software Testing Topics

122

Ut D Compound Measures

Combining the base measures into calculations that help
us address our information needs, answering questions
such as:

— What aspects of software structure can help forecast
development effort and quality?

- Is my software structure good?
— How should I test my software?
— How can I improve my software structure?

— How much has it improved?

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 23

Utop What Can We Measure?

We might learn something about the structure and
complexity of software by measuring:

- Requirements
= Models, use cases, test cases

— Architecture and Design
= Models, design patterns, structure, control flow, data flow

— The code itself
= Statements, variables, nesting, control flow, data flow

— The way the code is assembled to produce the final product
» Load files, use of libraries

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 24

UT D

One Problem Is That There are

Many Systems for Describing
Software Structure

= L)
;\ @
i= = = s
UML Model Diagram Windows 7 Ul Booch OOD COM and OLE Data Flow Model
Diagram
& [Ao
\‘\ e @ -
N - s W k) D
Enterprise Jacobson Use Case Jackson Program Flowchart ~ Program Structure
Application
o T—
e o] * a a
& | vj Slals = = "_.-
@ é

Nassi-Shneiderman ROOM Shlaer-Mellor OOA SSADM Yourdon and Coad

Copyright 2020, Dennis J. Frailey

Software Testing Topics

125

UT D

Generally Speaking We Measure
Complexity of Systems and of
Components that Make up Systems

We usually start with the architecture of the system

EXECUTIVE
MODEL

Q

o ;//op\\‘\

MODULE A MODULE B8

N

MODULE C

This s
the notation
for a decision

ENNZA

char

GET CHAR.

h

MODULE D

PUT CHAR.

This Is the
notaton

tor a loop

G

ET RECORD EXTRACT CHAR.

INSERT CHAR.
INTO RECORD

WRITE RECORD

Copyright 2020, De

nnis J. Frailey

Software Testing Topics

This is the
architecture of a
system defined
using structured
analysis. There are
complexity
measures for the
system and for the
individual

\ components. /

126

With Object Oriented Systems, the Nature of
the Components Varies with the Methodology

This means we must sometimes devise
methodology-specific measures

Docuraent %} e Media \

b | This is the
[| architecture of a
Structure Publication | Bt o system defined using
is-a presentation e object oriented

| | | . methodology. There
Table || Frame || List | [RefEntry| [anticle feat | | Cieephics are complexity
sa A measures for the
| system and for the

“Z4 Book || Serial | |Reference individual
K components.

Figure 1. IMultiraedia Docuraent Ivlodel - Object diagrara

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 2 7

UT D Order of Presentation
We will focus on complexity of structured, procedural
software
— Because this is where most of the research has been focused

— Because the results apply to software in many different
languages

— Because most of the results also apply to object oriented
software

From time to time we will mention how the concepts are
applied to object oriented software

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 28

ur D System Level Complexity

Fundamentally, the complexity of a system depends
on the number of components and the number of
links between the components of the system

ooooooo

It can be further complicated by the degree to which
the components share common elements (coupling)

Copyright 2020, Dennis J. Frailey Software Testing Topics

129

UT D Contents

> Structured Programs and Flowgraph Analysis

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 30

ur D Control Flow Captures Major
Complexity-related Attributes

Our intuitive notions of complexity would say that when
there are more parts and more complex ways they
interact, we have more complex software.

Many measures of complexity make use of control flow analysis.

Copyright 2020, Dennis J. Frailey Software Testing Topics

131

ut D Control Flow is Often Modeled with
Directed Graphs

START

(o]
i i
i sl
Node F F
[[owe | [z8cen]
Arc s !
o (e
Edge F
!
This could be flow within a
system or within a module .

M

o 1 default

START

Copyright 2020, Dennis J. Frailey

Software Testing Topics

132

In Many Notations, the Shape of the Node
Conveys the Nature of What it Represents

For example, flowcharts:

C) Terminator Predefined
Process
Process Q Display
[T o Q) oo
Manual Input
Off-page Connector
Q . /I: Annotation
Decision
Copyright 2020, Dennis J. Frailey Software Testing Topics

133

UT D Notation To Be Used Here
(in these slides)

Arc or Edge —_— A path between nodes

Procedure Node

— A block of code. @—> Squarish shape, :
. Exactly one arc leaving
Any decisions are

internal to the
block. One exit.

Predicate Node Round shape, Two or
— One that makes a more arcs leaving

decision.

- Start Node @ or " Colors of procedure and A
— predicate nodes are not part of
pr— the notation.

= Stop Node Colors are used only to clarify
— _ points being made on a slide. Y

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 34

Ut D A FlowGraph

A flowgraph is a directed graph with
— One start node, and
- One end node,

> that has the following property:

— Every other node lies on a path between the start node
and the end node

Notes:
— This notation works for any procedural programming language
— But not all languages can represent all possible flowgraphs

— Certain common language constructs have readily recognized
flowgraph forms

See later slides or Fenton,
page 379 for some examples.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 5

Example: Code, Flowchart, and Flowgraph

Code Flow-Chart Flow-Graph

statementl statementl
+
If expressionl
statement? expressionl
else l— §l
statement3 statement2 statement3
statement4 ' T '
. —_— statementd
atatements '

—— statements
+

while expression2

statementé

——— expressionz

|

statementé

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 6

Ut D What is a Structured Program?

A structured program is one constructed out of
three fundamental control structures:

- Sequence (ordered statements and/or subroutines)
= Examples: A = B+C; D = FUNC(E,F)

— Selection (one or more statements is executed,
depending on the state of the system)

= Example: If C1 Then <true option> Else <false option>

— Iteration [loop] (a statement or block is executed
until the program has reached a certain state)

= Examples: While; Repeat; For; Do... Until

Copyright 2020, Dennis J. Frailey Software Testing Topics

Sequence

Sl‘l __— First do S1
Slz/Then doS2
Selection
Q?
% 3
X é(r@
T S2
Loop
Q?

137

ut D Structured Program Notation

Sequence

statement
statement

Selection

statement statement

statement

statement

statement

condition A
Y n

condition

statement]) | statement statement

)

Blue: NS Diagram notation; Green: Flowchart notation

Tessessnenn e CELTTERLPTE .
v

statement

Iteration (Loop)

statement

Sequence

v First do S1
S1—"

v
52

|

Copyright 2020, Dennis J. Frailey

__~Thendo52

Selection

Software Testing Topics

Loop

138

These Three are Sufficient to Represent
Any Program

4 The structured program theorem, also A
known as the Bohm-Jacopini theorem, says
that the class of flowgraphs representing
the three control structures above can
_ compute any computable function)

> Note: This does not necessarily mean it is the only
way or the best way.

» The theorem simply states that it is possible to
represent any function with only the three control
structures.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 39

Why Are Structured Programs Important?

Studies have shown that limiting the software to a
small number of well defined control structures has
these benefits:

— Easier to understand

— Less error prone

— Easier to analyze and test

— Easier to measure

(

This started out as a theoretical concept, developed by Edsger Dijkstra and others.

It became more widely known when Dijkstra wrote his famous “Go To Considered
Harmful’! letter to the editor of Communications of the ACM (in 1968).

\

1 See References

Copyright 2020, Dennis J. Frailey Software Testing Topics

140

Ut D There May Be More Than One Flowgraph
Representing A Particular Kind of Control Structure

Example: Two flowgraphs for selection

4)

Each of these is also
a “prime"” flowgraph,
meaning it cannot be
reduced to a simpler
form. We'll discuss
this further in later

\ slides. /

If A then X If Athen X else Y
(Do) (Dy)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 4 1

Ut D Two Prime Flowgraphs for Iteration

Copyright 2020, Dennis J. Frailey

While A Do
X

(D2)

Repeat X
Until B

(D3)

Software Testing Topics

142

Ut D Prime Flowgraphs and D Notation

= A prime flowgraph is one that cannot be reduced (to a
simpler flowgraph).
— Dy, D1, D, and D3 are all prime.
— See discussion of “reduction” in later slides.

= The D notation is a widely recognized way of denoting
certain standard, prime flowgraphs.

If A then B
(Do)

This is a standard type of flowgraph, known as
a D, structured flowgraph.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 43

Ut D The Flowgraphs Dy,-D; (and sequencing)
Can Be Used To Represent Any Program

As a result, some define a program to be "structured”
only if it is represented by a combination of these
flowgraphs.

However, there are several additional prime
flowgraphs that represent commmonly used language
constructs and that can greatly simplify some
programs.

So different organizations and researchers have
defined additional prime flowgraphs that may be
permitted in “structured” programs.

In other words, every organization defines structured in its own way.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 44

UT D Structured Program Flowgraphs:
What Is Common and What Is Not

= What all structured programs have in common
— Definitions of edges, nodes, etc.

— Built out of the three fundamental constructs: sequence,
selection, and iteration

— It must be possible to reduce a program to a combination of a
selected set, S, of prime flowgraphs

= What is Different
— Which prime flowgraphs are included in the set S.

See Fenton, section 9.2 for a discussion of flowgraphs and
structure and, in particular, section 9.2.1.2 for a generalized
notion of structuredness.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 45

UT D An Example of Why
Additional Prime Flowgraphs are Useful

ELSE Y

Tru

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 46

[IF A or B THEN x

If only DO and D1 can be used to)
represent this code, then we must use
a D1 within another D1 and must show
False X twice.
This is the equivalent of rewriting the
source code as shown below. /

(IF A THEN X) i |
ELSE duplicated. If
Xis a lot of
e 2 ULl 2 code this is
_ ELSE Y) inconvenient./

Ut D D Was Introduced To Allow Common
Boolean Selection Decisions

If Athen B If Athen B else C If A or B then X If A and B then X
(Do) (D1) else Y else Y
(Ds) (Ds)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 47

i) D, Was Introduced to Allow Middle-Exit Loops

While A Repeat X
Do X Until B Do X
(D,) (D) Exit when A
DoY
Repeat
(D)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 48

C Flowgraphs are Prime Flowgraphs
for CASE Statements

~

Note that there are
an arbitrary number
of these, depending
on n — the number of
possible selections. Y,

/ Note also that these are classified\

Case A of as “C” structured flowgraphs, not
A Xy “D” structured flowgraphs, because
Ay Xy | A S
technically, the CASE statement is
A,: X, not one of the three fundamental
(Ci.) _ control structures. -

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 49

Ut D L Structured Flowgraphs Represent
Multi-Exit Loops

True

Do X
Exit when A
DoY
Exit when B
Repeat

(L)

Copyright 2020, Dennis J. Frailey

/A two-exit loop is\
shown (L,). This is
commonly used.
However higher
numbers of exits
could be

represented as wellj

~ Thisalsohasitsown)
classification (L) rather than
being considereda D
flowgraph because it is not
one of the three fundamental

_ control structures. ~/

Software Testing Topics

150

B Why Use Flowgraphs to Measure Complexity?

= Directed Graphs clarify the flow of control between
software elements

= Many measures of software complexity can be
determined from directed graphs

= It is fairly easy to represent any program with a
directed graph

— Note that there might be several ways to graph a program, but
they should all have the same measure of complexity if they
are done correctly

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 1

UT D Combining Flowgraphs

Flowgraphs with a single entry and single exit can be
combined in the following ways:

= Sequencing: Merging the end node of one flowgraph
with the start node of the other

= Nesting: Replacing an arc in one flowgraph with the
other flowgraph

Flowgraphs can also be reduced or condensed or
decomposed by reversing the above

= For example, collapsing a nested flowgraph into a
single node and arc

— This is, conceptually, the equivalent of replacing the nested
flowgraph with a procedure call

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 2

Ut D Sequencing Example

C : L o End
oL e ol
A D—G
Sequence S1 ‘ Sequence S2
* B—> C E—>F|
o e
A D—G

Sequence S1 S2

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 3

ur D Nesting Example

. B—>C E—>F

e“m 2 e
G—H.

D calls Procedure P

procedureP

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 54

Ut D Reduction Example 1

4 Any single-)
entry, single-
exit sub-
graph can be
replaced by a
procedure

_ call Y,

B—C EP{E
Wl e o e

[pro?::::fe -]7 Procedure P

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 5

Ut D Reduction Example 2

o
o B

Any sequence
containing no
decisions or
iterations can be

reduced to a
_ J

single node

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 6

Ut D McCabe Cyclomatic Complexity

The Cyclomatic Complexity (v) of a Module or a System is:

— The number of linearly independent! paths (basis paths)
through the module or system

— If F is a flowgraph?, then v(F) = e—-n + 2
= Where e is the number of edges (arcs)
= And n is the number of nodes

— If a system consists of multiple flowgraphs that are not
connected together, the formula becomes:
V(F) =e—-n+ 2c
= Where c is the number of separate flowgraphs3

1 To be discussed a little later 2 With one entry and one exit
3 In graph theory these are called connected components

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 7

Ut D Examples of Cyclomatic Complexity

= Example 1: D B n

>V(F)= e-n+2 = 3-4+2
» There is only 1 path through the code

1

= Example 2:

>»V(F) = e-n+ 2

6-5+2 3
True
» There are 3 paths through
the code:
= ABDE
= ABCE

= ACE

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 8

Why Is Cyclomatic Complexity Useful?

= Number of paths indicates maximum number of
separate tests needed to test all paths
— This should relate to the difficulty of testing the program

= It also indicates the number of decision points in

the program (plus 1)
— This should relate to the difficulty of understanding and
testing the program

Cyclomatic complexity is not a perfect measure of
these things (see Fenton, chapter 9) but it is a fairly
reliable guide.

Software Testing Topics 1 5 9

Copyright 2020, Dennis J. Frailey

The Higher the Cyclomatic Complexity, the

Harder the Code Is to Maintain

Cyclomatic Complexity

11-20 'More complex
21-50 Complex
50-100 “Untestable™
=100 Holy Crap!

while maintaining code.

10%

20% - 40%

40%
60%

CC Int tati Bad Fix Maintenance
Value nterpretation Probability* Risk

Simple
procedure

Minimal

Moderate

High

Very High
Extremely High

*Bad Fix Probability represents the odds of introducing an error

Copyright 2020, Dennis J. Frailey

Software Testing Topics

160

UT D What Do We Mean by
Linearly Independent Paths?

The number of linearly independent paths is the
minimum number of end-to-end paths required to touch
every path segment at least once.

- Sometimes the actual number of paths needed to cover the system is
less than this because it may be possible to combine several path
segments in one traversal.

There may be more than one set of linearly independent

paths for a given flowgraph
— This becomes more likely as you get more complex flowgraphs

Determining a set of linearly independent paths is
something you might study in a course on testing orin a
course on graph theory

— It gets harder as the cyclomatic complexity goes up

Copyright 2020, Dennis J. Frailey Software Testing Topics

161

UT D A Graph with Five
Connected Components

This graph has five
separate regions, p D%
which are connected (-_f)\ (T)\‘
within themselves, ()~ D—’é
but not to each other.

Each region is called Q 9)/ 3 \
a connected ()
component. D\%g‘

The graph above is not a flowgraph by our strict definition,
because it has more than one start and stop node and not all nodes
are connected to any given start or stop node. But it illustrates the
concept of connected components.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 2

Ut D Why Would We Care About Graphs
with Many Connected Components?

= We could measure the cyclomatic complexity of a
system consisting of several separate modules

= In object oriented systems we could measure the
cyclomatic complexity of a class containing multiple

methods
Surname
Prename Holder
Adress ~ Attributes, Number
Profession Properties - |CreditLine
Birthday " Balance
Holder of the right
Change of Residence _ of disposal
Change of Profession] -
Methods Deposit
_ Withdrawal
© Transfer
Standing Order

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 3

Ut D McCabe Essential Complexity

The Essential Complexity (ev) of a Module or a System is:
— The cyclomatic complexity of the fully reduced flowgraph
- Example:

= ev(F) = 1 because this can be reduced to one node

> If the flowgraph is constructed completely of prime
flowgraphs (i.e., it is structured) then the essential
complexity will be 1.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 64

Some Issues with Essential Complexity
(slide 1 of 2)

Essential complexity is intended to tell us how well
structured a program is.

However

= As originally defined, the only valid primes were the
four D structured primes: Dy, D4, D,, D5

— So if you allow additional primes, do you revise the definition
of essential complexity to include the new primes?

— Do you allow D4 and Ds but nothing else?

— What about the C structured primes and the L structured
primes?

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 5

Some Issues with Essential Complexity
(slide 2 of 2)

If your program is not “structured” it isn’t clear whether
the essential complexity tells us much beyond that

— Does a larger essential complexity actually mean anything?
— If two programs have the same essential complexity, are they
equally complex?
= See fig. 9.13 in Fenton for an example

= He shows two flowgraphs that have the same essential complexity,
but intuitively one of them is a lot more complex and harder to
understand than the other.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 66

UT D Contents

» Closing Remarks

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 7

There is No Single Measure of Complexity

= As we have seen, there are different ways to measure
complexity

= Research shows that sometimes the attributes of
complexity may conflict

— For example
= low coupling doesn’t always mean high cohesion

= low cyclomatic complexity doesn’t always mean easy to
understand

= structured software may be awkward to produce in languages
without certain constructs

Use complexity measures as guidelines, not as
“magic numbers” that result in rigid requirements
for code.

Copyright 2020, Dennis J. Frailey Software Testing Topics

168

UT D

END OF
Part 5

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 69

Ut D Any Questions?

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 0

UT D

End of
Lecture

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 1

UT D

References
Part 3 (10f2)

Chatfield, C., Statistics for Technology, A Course in Applied Statistics,
Third Edition, Chapman and Hall, London (1983), ISBN 978-04122534009.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 6.

Hedstrom, John and Dan Watson, “Developing Software Defect
Prediction,” Proceedings, Sixth International Conference on Applications of
Software Measurement, 1995,

Jones, Capers, Applied Software Measurement, McGraw Hill, 1991. ISBN:
0-07-032813-7.

Knuth, Donald, Seminumerical Algorithms: The Art of Computer
Programming, Vol II, Addison-Wesley, 1969. ASIN: BOO157WFAU

Copyright 2020, Dennis J. Frailey Software Testing Topics

172

UT D References
Part 3 (20f2)

Ott, R.L. and M. T. Longnecker, An Introduction to Statistical Methods
and Data Analysis, 6" Edition, Duxbury Press (2008), ISBN 978-
0495017585.

Snyder, Terry and Ken Shumate, Defect Prevention in Practice (Draft
white paper), Hughes Aircraft Company, October 22, 1993.

Ross, Sheldon M.. Introduction to Probability Models, Academic Press,
1993. Musa, John, Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, McGraw Hill. ISBN: 0-07-913271-5.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 3

UT D

References
Part 4 (10r2)

Abran, A., et. al., "Functional Complexity Measurement”, Proceedings,
IWSM 2001 - International Workshop on Software Measurement.

Chidamber, S. and Chris Kemerer, A Metrics suite for Object Oriented
Design, MIT Sloan School of Management E53-315 (1993).

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and

Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 9

Fenton, N. and A. Melton, "Deriving Structurally Based Software
Measures,” Journal of System Software, vol 12 (1990), pp 177-187.

Henry, S. and D. Kafura, "Software Structure Metrics Based on
Information Flow”, IEEE Transactions on Software Engineering, Volume SE-
7, No. 5 (Sept, 1981), pp 510-518.

Copyright 2020, Dennis J. Frailey Software Testing Topics

174

UT D

References
Part 4 (20f2)

IEEE 9982.2 (1988). IEEE Guide for the Use of IEEE Standard Dictionary
of Measures to Produce Reliable Software, A25. Data of Information Flow
Complexity. P112.

Stevens, W., G. Myers and L. Constantine, “"Structured Design”, IBM
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Kitchenham, B. A., "Measuring to Manage”, in Mitchell, Richard J. (editor),

Managing Complexity in Software Engineering, London, Peter Peregrinus,
Ltd. (1990). ISBN 0 86341 171 1

Lavazza, L. and G. Robiolo, "Functional Complexity Measurement:
Proposals and Evaluations”, Proceedings of ICSEA 2011: the Sixth
International Conference on Software Engineering Advances.

Copyright 2020, Dennis J. Frailey Software Testing Topics

175

UT D References
Part 5

Dijkstra, Edsger, "GO TO Considered Harmful”, letter to the editor of
Communications of the ACM, March, 1968.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 9

Fenton, N. and A. Melton, "Deriving Structurally Based Software
Measures,” Journal of System Software, vol 12 (1990), pp 177-187.

McCabe, Thomas, "A complexity measure,” IEEE Transactions on Software
Engineering, vol SE-2, issue 4 (December, 1976), pp 308-320.

Stevens, W., G. Myers and L. Constantine, “"Structured Design”, IBM
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 6

UT D

Exercise

Given a Program, Determine its Flowgraph and
its Cyclomatic Complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 7

