
Copyright 2020, Dennis J. Frailey Software Testing Topics 1

UT Dallas

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality Relates
to Testing)

Part 2 – Fundamental Concepts of
Measurement and Data Analysis

Part 3 – Defect Containment
Part 4 – Measuring Software Structure

Part 5 – Measuring Software Complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics 2

Dennis J. Frailey
Retired Principal Fellow - Raytheon Company

PhD Purdue, 1971, Computer Science
Assistant Professor, SMU, 1970-75
Associate Professor, SMU, 1975-77

(various titles), Texas Instruments, 1974-1997;
Raytheon Co. 1997-2010

Adjunct Associate Professor, UT Austin, 1981-86
Adjunct Professor, SMU, 1987-2017

Adjunct Professor, UT Arlington, 2014-present

Areas of specialty: software development
process, software project management,

software quality engineering, software metrics,
compiler design, operating system design, real-

time system design, computer architecture

Copyright 2020, Dennis J. Frailey Software Testing Topics 3

Part 3

Defect Containment
(Phase Containment)

Copyright 2020, Dennis J. Frailey Software Testing Topics 4

Defect Containment (Phase Containment)

This requires that you collect additional information
about each defect you discover during an inspection
or as a result of a test:

– In what phase of development was the defect created?

– In what phase was it detected?

Insights.sei.cmu.edu

Copyright 2020, Dennis J. Frailey Software Testing Topics 5

Note on Defect Containment

§ There are several variations on this method

§ All use the same basic data (base measures) but they use
the data in different ways

In this course we will illustrate one
of the variations on this method.

You may find others at
www.sei.cmu.edu

Copyright 2020, Dennis J. Frailey Software Testing Topics 6

Example of Defect Containment

§ Suppose you detect a lot of defects during system test

§ And suppose you discover that most of them occurred due
to bad design procedures

§ Then you know that the best way to fix the problem is to
improve your design procedures

Copyright 2020, Dennis J. Frailey Software Testing Topics 7

In-Phase Defects

In-phase defects are those that are corrected in the
same development phase where they were introduced

- Example: a coding error that is caught and corrected
while you are writing the code, before going to system test

Ø Measuring in-phase defects tells you which parts of
your process generate large numbers of defects

In-phase defects are generally the
least costly to correct.

Copyright 2020, Dennis J. Frailey Software Testing Topics 8

Out-of-Phase (Leaking) Defects

Out-of-phase defects are those that are detected (and
corrected) after they leave the phase where they

were introduced
- Example: a design error caught during unit test

Ø Measuring out-of-phase defects indicates how often
you allow defects to “leak” from the phase where
they originate
– this is a predictor of post-release failures
– and also a good help in root cause analysis

Out-of-phase defects are generally
the most costly to correct.

Finding the
Ultimate Cause

of a Defect

Copyright 2020, Dennis J. Frailey Software Testing Topics 9

Defect Containment Analysis
Step 1 – Collect the Data

Defect Report

Description ______________

Phase where found ____

Phase where introduced ___

Priority _____ Type _____

Estimated Cost to Fix _____

etc.

Track Each Defect and Record Phase of Origin

Copyright 2020, Dennis J. Frailey Software Testing Topics 10

Phase where Defect was Inserted

Phase
where
Defect

was
Detected

I&T

I&T

C&T

C&T

DDPD

DD

PD

RA

RA

POST
REL.

POST
REL.

15

23

1783

5512

42 8

15

Defect Containment Analysis
Step 2 – Record and Display the Data

This
shows the

data at
the end of
the C&T
phase

Defect Containment Matrix – Sequential Process

Copyright 2020, Dennis J. Frailey Software Testing Topics 11

Scrum where Defect was Inserted

Scrum
where
Defect

was
Detected

S5

S5

S4

S4

S3S2

S3

S2

S1

S1

POST
REL.

POST
REL.

15

23

1783

5512

42 8

15

Defect Containment Analysis
Step 2 – Record and Display the Data

This
shows the

data at
the end of

the 4th

SCRUM

Defect Containment Matrix – SCRUM Process

Copyright 2020, Dennis J. Frailey Software Testing Topics 12

Defect Containment Analysis Step 3 -
Using the Data

If you see many out-of-phase defects in a specific cell,
you can narrow down the source of defects

Phase where Defect was Inserted

Phase
where

Defect was
Detected

I&T

I&T

C&T

C&T

DDPD

DD

PD

RA

RA

POST
REL.

POST
REL.

15

23

1783

5512

42 8

15

A lot of defects originate during requirements
analysis but are not detected until detailed design

A lot of defects are created
during preliminary design

Copyright 2020, Dennis J. Frailey Software Testing Topics 13

Defect Containment Analysis Step 4 -
Using the Data to Provide

Additional Insight

Over time, you can correlate

§ the number of defects in the matrix

§ to the number of failures found by the customer

Ø You can use this to predict and ultimately to
manage the number of failures

A method for doing this will be shown briefly in today’s lecture

Copyright 2020, Dennis J. Frailey Software Testing Topics 14

Observations on This Method

1. Definition of a defect must be adhered to in a
consistent way across the project and, preferably,
across all projects in an organization
– Some projects may resist defining defects the same way as

other projects.

2. As shown, there is no distinction by type or
severity of defect

– But this distinction can also be made if the original data are
good enough)

Copyright 2020, Dennis J. Frailey Software Testing Topics 15

If you detect and correct defects early, it greatly
reduces cost and reduces post-release failures (i.e.,

those seen by the customer)

Ø But this requires very good understanding of
requirements and of customer “care-abouts”

Dau.dodlive.mil

A Key Lesson Learned from Measuring
Defect Containment

Copyright 2020, Dennis J. Frailey Software Testing Topics 16

Contained and Leaking Defects

RA PD DD C&UT I&T Post Rel
RA 15
PD 12 55
DD 22 8 23
C&UT 15 3 8 17
I&T
Post Rel

Ph
as

e
of

D

et
ec

ti
on

Phase of Injection

Out-of-phase or Leaking

In-phase or Contained

Copyright 2020, Dennis J. Frailey Software Testing Topics 17

Large Numbers Indicate
Software Development Process Problems

§ Large numbers in any column indicate that your
development process is generating many defects in
that process phase

§ A large number in a “leaking” cell means you are
also paying a lot of money for rework

This tells you where to focus
process improvement efforts

Copyright 2020, Dennis J. Frailey Software Testing Topics 18

A Typical Defect Containment Chart

Phase Originated
Phase
Detected

RA PD DD CUT I&T SYS INT POST REL total

RA 730 730
PD 158 481 639
DD 19 2 501 522
CUT 15 0 12 63 90
I&T 25 4 35 321 9 394
SYS INT 4 0 7 19 4 2 36
POST REL 48 2 0 36 0 0 67 153

total 999 489 555 439 13 2 67 2564

Least Costly Defects are on the Diagonal

These defects are “Contained” within the step where they were caused

Copyright 2020, Dennis J. Frailey Software Testing Topics 19

Escaping Defects are Those
Not Detected until After Release

Phase
Originated

Phase
Detected

RA PD DD CUT I&T SYS INT POST
REL

total

RA 730 730

PD 158 481 639

DD 19 2 501 522

CUT 15 0 12 63 90

I&T 25 4 35 321 9 394

SYS INT 4 0 7 19 4 2 36

POST
REL

48 2 0 36 0 0 67 153

total 999 489 555 439 13 2 67 2564

Escaping Defects Cost the Most of All

Copyright 2020, Dennis J. Frailey Software Testing Topics 20

Other Uses of
Defect Containment Data

There are many uses of defect containment

§ Calculating total repair cost
– By recording labor cost to repair defects

§ Calculating rework cost
– Reduction in rework can be compared with

cost of prevention activities

§ Organizational-level analysis

§ Prediction of defects and warranty costs

§ Prediction of reliability

Aspennw.com

Ijser.org

Sciencedirect.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 21

Defect Repair Cost

RA PD DD C&UT I&T Post Rel
RA $1

PD $12 $2

DD $22 $8 $2

C&UT $45 $18 $8 $2

I&T
Post Rel

Ph
as

e
of

D

et
ec

ti
on

Phase of Injection

Cell i,j indicates the

average labor cost

to repair a defect

created in phase i and

detected in phase j

Labor Cost to Repair Defects Aspennw.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 22

Total Repair Cost

If you multiply the defect containment chart by the
“labor cost to repair” chart, you get total repair cost

Cell-wise
multiplication

Defect
Counts

Cost to
Repair

Total
Repair Cost

Aspennw.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 23

RA PD DD C&UT I&T Post Rel
RA $15

PD $144 $110

DD $484 $64 $46

C&UT $675 $54 $64 $34

I&T
Post Rel

Ph
as

e
of

D

et
ec

ti
on

Phase of Injection

Total Repair Cost Example

Aspennw.com

Cell i,j indicates the

total labor cost

to repair all defects

created in phase i and

detected in phase j

Copyright 2020, Dennis J. Frailey Software Testing Topics 24

Rework Costs Are
The Portion Of the Prior Chart
That Are Not On The Diagonal

RA PD DD C&UT I&T Post Rel
RA $15

PD $144 $110

DD $484 $64 $46

C&UT $675 $54 $64 $34

I&T
Post Rel

Ph
as

e
of

D

et
ec

ti
on

Phase of Injection

Costs off-diagonal are rework costs

Ijser.org

Copyright 2020, Dennis J. Frailey Software Testing Topics 25

This Concept Applies
Throughout the Product Lifetime
You can track repair cost and rework cost

during development
and

after delivery to the customer

§ You can further break defects down by characteristics:
– Phase of Development where Defect Occurred
– Severity
– Importance to Customer
– Cost to Repair
– Time to Repair
– Which Part of the Software was Responsible
– Etc.

Ijser.org

Aspennw.com

Imgkid.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 26

This Can Help You Justify
Process Improvements

Rework costs are the equivalent of “software scrap”

§ If you can reduce scrap by investing in defect
prevention activities, you can save a lot of money
(see earlier modules)

§ If you make an improvement in your development
process, you can use the defect containment chart to
show the savings in reduced repair cost

§ And you can use the chart to determine which parts
of the process are most important to improve

Ijser.org

Copyright 2020, Dennis J. Frailey Software Testing Topics 27

Analyzing Defect Data at the
Organizational Level

§ By collecting data from many projects, we can show
historical costs for rework

§ And we can also show patterns of defect containment

…

Organization
Data

Project
A Data

Project
B Data

Project
C Data

Project
N Data

Copyright 2020, Dennis J. Frailey Software Testing Topics 28

Organizational Analysis of Defect
Containment Data

Analysis of defect containment data for many projects
over a period of time

may show such organizational information as:
–Most frequent types of defects

–Most costly defects

–Time required to fix defects

–Process steps generating the most defects

–Which design standards help or hurt defects

Typically we collect the data needed for
statistical process control:

averages, ranges, distributions, maximum, minimum, etc.

Copyright 2020, Dennis J. Frailey Software Testing Topics 29

Example: Determining an
Organizational Process Metric

Defect
Data from

SA/SD
Projects

Defect
Data

from OO
Projects

SA/SD Defect Pattern OO Defect Pattern

Copyright 2020, Dennis J. Frailey Software Testing Topics 30

Overview of the Cost Data Collection
Process for an Organization

RA PD DD CUT I & T
RA 2
PD 4 2
DD 6 4
CUT 8

4 2I & T 10
4

6

8
26

2

Combine project Data
for each table entry.

Product 1

Product 2

Product 3
Product 4

V
a
l
i
d
a
t
i
o
n

Historical Project Data
Hours/Defect

Table entry (I,J)

Count

Log
Hours
Expended

Analyze each table
entry for mean, std dev..

COST CAPABILITY MATRIX

C11
C21
C31

C41

C51

C22

C32 C33

C42 C43 C44

C52 C53 C54 C55

Defect History in
Hours/Defect

Compare with Your
Current Experience

TABLE ENTRY (I,J)
CAPABILITY

µ

Expected range of
values for each

table entry.
µ+2 s

sµ-2

RA PD DD CUT I & T
RA 2
PD 4 2
DD 6 4
CUT 8

4 2I & T 85
4

6

8
26

2

Out of Range Here!

Show a distribution
for each cell.

Copyright 2020, Dennis J. Frailey Software Testing Topics 31

Before We Discuss Additional Uses of
Defect Containment …

We need to introduce a special distribution that we haven’t
seen before

Poisson Distribution

Copyright 2020, Dennis J. Frailey Software Testing Topics 32

Contents

§ Applications of Defect Containment

Ø Poisson Distributions

§ A Model for Predicting Defect Levels and
Associated Costs, Using Defect Containment

§ Predicting Reliability

§ Measuring the Cost of Defect Removal

Copyright 2020, Dennis J. Frailey Software Testing Topics 33

Recall We Introduced Distributions in
the Previous Lecture

We mentioned
that there are

many
distributions that

correlate to
actual data.

Today we will
introduce the

Poisson
distribution

Copyright 2020, Dennis J. Frailey Software Testing Topics 34

Exponential Distribution Formula

You may be familiar with the exponential
distribution function:

Exponential f(t) = le-lt

Copyright 2020, Dennis J. Frailey Software Testing Topics 35

Poisson Distribution Formula

Poisson distribution has a similar formula:

Exponential f(t) = le-lt

Poisson f(t) = lte-l / t!

Poisson distribution is only defined for
positive integer values of t

For Poisson distributions, l is the
average or mean value of t

t! = t factorial (1*2*…*t)

Copyright 2020, Dennis J. Frailey Software Testing Topics 36

Uses of Poisson Distribution

§ Exponential and many other distributions are
used for situations where

the independent variable (t) is continuous
– t can be any value or any non-negative value

– such distributions are often used for estimating
when an event will occur

such as when a failure or defect will occur

§ Poisson distribution is used for situations where
the independent variable (t) is a discrete,

positive integer
– Often used for predicting the number of events (for

example, number of failures or defects) that will
occur in a given time period

Copyright 2020, Dennis J. Frailey Software Testing Topics 37

Poisson Formula is Often Written
Using the Letter k rather than t

To suggest an integer value

f(k) = lke-l / k!

k is a number of occurrences
f(k) is the probability that an event (such as a

failure) will occur k times

Copyright 2020, Dennis J. Frailey Software Testing Topics 38

Poisson Distributions

k (horizontal axis)
is number of
occurrences

P(X=k) (vertical
axis) is the
probability that an
event will have
the indicated
number of
occurrences

Copyright 2020, Dennis J. Frailey Software Testing Topics 39

Advantages of Poisson Distribution

Poisson distributions are often used for situations
where occurrences are discrete, independent and

relatively uncommon

Benefits:
– Relatively un-restrictive assumptions
– Relatively straightforward derivation and a relatively

simple model
– Among other things, the mean = the variance, which

simplifies many calculations

Thus Poisson distributions are widely
used in software reliability modeling

Copyright 2020, Dennis J. Frailey Software Testing Topics 40

A Practical Note about Calculating
Poisson Distributions on a Computer

Ø If k is large, both lk and k! may be very large numbers
– This may lead to overflow or underflow and, thus, highly

inaccurate/unstable calculations

f(k) = lke-l / k!

This is a good example of a common situation on
computers: what is simple mathematically may not be

so simple to implement on a computer

Copyright 2020, Dennis J. Frailey Software Testing Topics 41

A Mathematically Equivalent But
Computationally More Stable Equation

On a computer, you may want to compute the
Poisson distribution in this fashion:

Where � is the “gamma function”

In Excel:
GAMMA() is the gamma function: �()
GAMMALN() is the natural logarithm of the gamma function:
ln �()

In MATLAB: gammaln()
In C standard library: lgamma()

f(k) = exp{k ln l - l - ln �(k+1)}

Copyright 2020, Dennis J. Frailey Software Testing Topics 42

Contents

§ Applications of Defect Containment

§ Poisson Distributions

Ø A Model for Predicting Defect Levels and
Associated Costs, Using Defect Containment

§ Predicting Reliability

§ Measuring the Cost of Defect Removal

Copyright 2020, Dennis J. Frailey Software Testing Topics 43

We Can Predict Rework and Other Costs
from Defect Level

§ A predictive model, to be introduced in the next several
slides, relates future defect levels to defect
containment values

For a given project or group of similar projects, we can
predict future defects and rework cost

as a function of

the defect level achieved during software development

§ The model can be applied early in development and
continually refined as development proceeds
Ø So you can spot potential trouble early

Copyright 2020, Dennis J. Frailey Software Testing Topics 44

Predicting Quality
A Model Based on Defect Containment

Assumption:

We have a software development process with N phases

Li = the number of defects introduced in phase i

Other Assumptions:
1. Li has a Poisson distribution with mean li

2. Li and Lj are independent for i � j.

Copyright 2020, Dennis J. Frailey Software Testing Topics 45

Continuation of the Model

Kij = the number of defects detected in phase j
that originated in phase i

For additional information on this model, see
Hedstrom and Watson in the Reference List

Copyright 2020, Dennis J. Frailey Software Testing Topics 46

The Model

RA PD DD C&UT I&T
RA K11

PD K12 K22

DD K13 K23 K33

C&UT K14 K24 K34 K44

I&T K15 K25 K35 K45 K55

TOTAL L1 L2 L3 L4 L5

Ph
as

e
of

D

et
ec

ti
on

Phase of Injection

Copyright 2020, Dennis J. Frailey Software Testing Topics 47

More of the Model

Pij = the probability that a defect introduced in phase i
will be detected in phase j

Assumptions:

The detection forms a Bernoulli process

[in other words, a software development process where
the individual steps are independent from each other]

and

Detection of one defect is independent of others

Copyright 2020, Dennis J. Frailey Software Testing Topics 48

Distribution of Detected Defects

It can be shown that Kii has a Poisson distribution
with mean liPii. [Ross, 1993]

It can also be shown that the number of defects
leaking from the phase where they were

introduced, Li - Kii,

has a Poisson distribution with mean li(1-Pii).

Reminder: A Poisson distribution is a common assumption
when dealing with discrete, independent and relatively rare
events. For more on this see Ross or Knuth in references.

Copyright 2020, Dennis J. Frailey Software Testing Topics 49

Distribution of Detected Defects (continued)

In general, the number of phase i defects detected in
the jth phase (i.e., Kij)

has a Poisson distribution with mean:

(1-Pii) * (1-Pii+1)*...*(1-Pij-1)*Pijli

Quazoo.com

It might
look

something
like this

Copyright 2020, Dennis J. Frailey Software Testing Topics 50

Distribution of Escaping Defects

Let Li
* = Li - SKij [j=1..N] be

the number of step i defects not detected by the Nth step
of the process

(i.e., the number of escaping defects from step i)

Copyright 2020, Dennis J. Frailey Software Testing Topics 51

Distribution of Escaping Defects
(continued)

It can be shown by induction that Li
* has a Poisson

distribution with mean:
li

* = li P (1-Pij) [j=1..N]

which we can rewrite as:
li

* = aili

where ai = P (1-Pij) [j=1..N]

Copyright 2020, Dennis J. Frailey Software Testing Topics 52

Total Escaping Defects

L* = S Li
* [i=1..N]

is the total number of escaping defects.

It has a Poisson distribution with mean:

l* = S li
* = S liP (1-Pij) = S aili [i=1..N]

Copyright 2020, Dennis J. Frailey Software Testing Topics 53

Leaking and Escaping Defects

RA PD DD C&UT I&T
RA K11

PD K12 K22

DD K13 K23 K33

C&UT K14 K24 K34 K44

I&T K15 K25 K35 K45 K55

TOTAL L1 L2 L3 L4 L5

Escaping L1* L2* L3* L4* L5* Sum = L*Escaping

Leaking

Copyright 2020, Dennis J. Frailey Software Testing Topics 54

Total Detected Defects

It can also be shown that Ki = S Kij [j=1..N],
[the total number of defects from stage i which were

detected]

has a Poisson distribution with mean and variance given by:

Mean (Ki) = aili S(Pij/bij) [j=1..N]

Var (Ki) = aili S(Pij/bij) [j=1..N]

where bij = P (1-Pik) [k=j..N]
(mean = variance because Poisson)

Copyright 2020, Dennis J. Frailey Software Testing Topics 55

Estimating Escaping Defects

The Ki form a sufficient statistic for estimating the li and
hence the li

* and l*.

Maximum likelihood estimators for the li are given in
[Hedstrom and Watson, 1995], along with additional details

of the model and its derivation.

The point is that
we can estimate escaping defects
as a function of measurable data,

namely the Ki and the Pij.

The
numbers in
the defect

containment
matrix

Copyright 2020, Dennis J. Frailey Software Testing Topics 56

Uses of the Model
Defect Predictive Engine

§ The defect predictive engine is a spreadsheet that
– uses the formulas on the previous slides
– to relate the final escaping defect level
– to the numbers in the defect containment chart

§ The engine predicts final defect level, given
estimated or actual defect levels

Semanticscholar.org Dreamstime.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 57

You Can Manage the Process to Achieve a
Desired Defect Level (Predicted)

1. Start with historical data
– Populate the defect containment chart with historical

averages from your organization
– Predict the escaping defects, using the formulas in the model

2. Augment with actual data
– As the development project proceeds, replace the averages

with actual project data
– Recompute the predicted escaping defect levels
– If the levels are too high, refine the process, such as:

§ More rigorous inspections, testing and peer reviews
§ More careful development practices
§ Etc.

– Repeat

Copyright 2020, Dennis J. Frailey Software Testing Topics 58

Require-
ments

Prelim.
Design

Detailed
Design

Code &
Unit
Test

Integ.
& Test

Estimated
Warranty
Cost

Predicted
Defects
Escaping

16 19 16 16 1

Predicted
Repair
Cost ($K)

$23.4 $47.9 $27.1 $22.5 $30.0 $150.9

Consider a software product
with a predicted number of defects.

Example: Quantifying the Warranty
Cost for a Software Product (1 of 3)

Copyright 2020, Dennis J. Frailey Software Testing Topics 59

Consider a software product
with a predicted number of defects.

Ø Estimate the potential cost of warranty work
(labor hours * $xx/hr.).

Example: Quantifying the Warranty
Cost for a Software Product (2 of 3)

Require-
ments

Prelim.
Design

Detailed
Design

Code &
Unit
Test

Integ.
& Test

Estimated
Warranty
Cost

Predicted
Defects
Escaping

16 19 16 16 1

Predicted
Repair
Cost ($K)

$23.4 $47.9 $27.1 $22.5 $30.0 $150.9

Copyright 2020, Dennis J. Frailey Software Testing Topics 60

Consider a software product
with a predicted number of defects.

Ø Estimate the potential cost of warranty work
(labor hours * $xx/hr.).

Example: Quantifying the Warranty
Cost for a Software Product (3 of 3)

Require-
ments

Prelim.
Design

Detailed
Design

Code &
Unit
Test

Integ.
& Test

Estimated
Warranty
Cost

Predicted
Defects
Escaping

16 19 16 16 1

Predicted
Repair
Cost ($K)

$23.4 $47.9 $27.1 $22.5 $30.0 $150.9

Total the
warranty
estimates

Copyright 2020, Dennis J. Frailey Software Testing Topics 61

Other Ways to Use the Information
from the Model and the Engine

§ Improve defect detection
–Model/Engine shows where detection is needed and how it

will pay off in two ways:
§ Reduced rework during development
§ Reduced warranty cost

§ Reduce defects by fixing the software
development process
–Model/Engine pinpoints where the problems are coming

from and the potential level of pay off

Copyright 2020, Dennis J. Frailey Software Testing Topics 62

Contents

§ Applications of Defect Containment

§ Poisson Distributions

§ A Model for Predicting Defect Levels and
Associated Costs, Using Defect Containment

Ø Predicting Reliability

§ Measuring the Cost of Defect Removal

Copyright 2020, Dennis J. Frailey Software Testing Topics 63

Defects and Reliability are Related,
Although Not Always Strongly

§ As we mentioned earlier in the course, the number
of defects may or may not correlate well with
reliability

§ Many studies do show that reliability is related to
defect levels in practice

Copyright 2020, Dennis J. Frailey Software Testing Topics 64

Capers Jones’ Data

Defects per KLOC Reliability (MTTF)
>20 2-15 minutes

10-20 5-60 minutes
5-10 1-4 hours
2-5 4-24 hours
1-2 24-160 hours

See references.
Assembly language code written in the 1970’s.

Copyright 2020, Dennis J. Frailey Software Testing Topics 65

Escaping Defects and Reliability

Musa [see references] has shown a simple reliability
model that requires an estimate of escaping defects.

l0 = fKw0

l0 is the failure rate

f is the rate at which the software is used

K is a small constant indicating which portion of faults
are visible as failures

w0 is the escaping defect level.
So we could use the defect containment

model to predict reliability.

Copyright 2020, Dennis J. Frailey Software Testing Topics 66

In Your Own Organization ...

§ Capture data to correlate
defects with reliability or
repair costs

§ Find a model, such as
Musa’s, that fits your data

§ Use to predict reliability or
repair costs

Slideplayer.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 67

Part 4

Measuring the Structure of a
Program

Copyright 2020, Dennis J. Frailey Software Testing Topics 68

Contents

§ Introduction

§ Some Popular Structure Metrics

§ Cohesion and Coupling

– Coupling

– Cohesion

§ Measures of Data Flow

Copyright 2020, Dennis J. Frailey Software Testing Topics 69

Contents

Ø Introduction

§ Some Popular Structure Metrics

§ Cohesion and Coupling

– Coupling

– Cohesion

§ Measures of Data Flow

Copyright 2020, Dennis J. Frailey Software Testing Topics 70

Possible Goals for Measuring
Software Structure (1 of 5)

To identify and admire the beauty of its
architecture?

That’s really
beautiful code!

Copyright 2020, Dennis J. Frailey Software Testing Topics 71

Possible Goals for Measuring
Software Structure (2 of 5)

To help us identify structural approaches that are more
successful than others

– Less error prone

– Easier to test

– Easier to understand

– Easier to maintain

Copyright 2020, Dennis J. Frailey Software Testing Topics 72

Possible Goals for Measuring
Software Structure (3 of 5)

To help us estimate the effort to produce the software

Copyright 2020, Dennis J. Frailey Software Testing Topics 73

Possible Goals for Measuring
Software Structure (4 of 5)

To help us estimate the quality of the software

Copyright 2020, Dennis J. Frailey Software Testing Topics 74

Possible Goals for Measuring
Software Structure (5 of 5)

To help us devise a more effective test plan for the
software

Copyright 2020, Dennis J. Frailey Software Testing Topics 75

Does Structure Relate to These Things?

Intuitively, we believe that the structure of the
software relates to its quality and to the effort required
to develop, test and support it:

– Ease of programming
– Ease of understanding
– Ease of testing and maintaining

So our information needs tend to be things like:
– What aspects of software structure can help forecast

development effort and quality?
– How should I test this software?
– How can I improve my software structure?
– How much has it improved?

Copyright 2020, Dennis J. Frailey Software Testing Topics 76

How Can We Measure Software
Structure?

Many have attempted to devise ways of measuring
structural aspects of software to see if they can show
more specific relationships

– For example
§ Halstead’s attempt to define programming difficulty and level of

the language
§ McCabe’s complexity measures (to be discussed later)

In this lecture we will explore several of the most
frequently cited and used methods of measuring
software structure and talk about their effectiveness

Copyright 2020, Dennis J. Frailey Software Testing Topics 77

There are Many Things We Could Measure

§ Each Level of Abstraction has different Elements to
Measure
– Statement, function, method, class, package, sub-system,

system

§ We must understand how to describe each Element
Measured
– Syntax and semantics of the language or notation used to

represent the software

§ Eventually, we must measure attributes of individual
components or elements of the design, code,
requirements model, etc.

Copyright 2020, Dennis J. Frailey Software Testing Topics 78

Flow Can Also be Measured

§ Control Flow
– The sequence in which things

happen
§ Loops, parallelism, conditional

execution, etc.

§ Data Flow
– The trail of the data as it flows

through the program

Copyright 2020, Dennis J. Frailey Software Testing Topics 79

Contents

§ Introduction

Ø Some Popular Structure Metrics

§ Cohesion and Coupling

– Coupling

– Cohesion

§ Measures of Data Flow

Copyright 2020, Dennis J. Frailey Software Testing Topics 80

Structural Fan-in and Fan-out

§ Fan-in – the number of parent modules (the number of
modules that call or utilize this module)

– Goal: high fan-in at the lower levels of the hierarchy, such as
procedures

§ Fan-out – the number of subordinate modules (the
number of modules that this module calls)
– Goal: fan-out should be no higher than 7 � 2 (5 to 9).
– This is based on studies of human psychology

Copyright 2020, Dennis J. Frailey Software Testing Topics 81

Contents

§ Introduction

§ Some Popular Structure Metrics

Ø Cohesion and Coupling

ØCoupling

– Cohesion

§ Measures of Data Flow

Copyright 2020, Dennis J. Frailey Software Testing Topics 82

Coupling of Modules or Methods -- Overview
§ Coupling refers to the degree of independence of a

program module or method.
– If measured for a single module, it indicates the extent to

which the module can function (or be understood) without
the use of other modules

– If measured for a pair of modules, it indicates the extent to
which the two modules depend on each other

§ Goal:
– Low or loose coupling is associated with readability, testability

and low maintenance cost

– Tight coupling is associated with testing difficulty and high
maintenance cost

The original concept was developed by Stevens, et. al. (see references)

Copyright 2020, Dennis J. Frailey Software Testing Topics 83

Coupling Diagrams

Coupling describes how much the
modules or methods depend on

other modules/methods.Ecomputernotes.com

Dailyfintech.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 84

Disadvantages of Tight Coupling
§ Assembly / compiling of modules or methods may be

more complicated and take more time, because you
have to assemble / compile all of the affected ones

§ Testing of a module or method is harder
– It involves interaction with other modules

§ Changes to one module or method affect other modules
or methods
– Consequences of a change are easily overlooked
– It is harder to test the consequences of a change

§ Reuse of a module is more error prone

§ Software performance may be affected due to the
overhead of message/parameter passing and
interpretation

Copyright 2020, Dennis J. Frailey Software Testing Topics 85

Degrees of Coupling (Myers’ Classification)

En.Wikipedia.org

Copyright 2020, Dennis J. Frailey Software Testing Topics 86

Degrees of Coupling Defined (slide 1 of 2)

From tightest to loosest (Myers’ classification)

§ Content coupling: one module modifies or relies on the
internal data or other workings of another module.

§ Common coupling: two modules share the same global
data. If the global data is changed in format or content, it
affects all modules that use it.

§ External coupling: two modules share an externally
imposed data format, communication protocol or device
interface.
– For example, both use the same communication interface

§ Control coupling: one module controls the flow of another,
by passing it information on what to do (such as a flag).

Copyright 2020, Dennis J. Frailey Software Testing Topics 87

Degrees of Coupling Defined (slide 2 of 2)

From tightest to loosest (continued):

§ Stamp coupling (data structure coupling): modules share
a composite data structure and use different parts.

§ Data coupling: modules share data through parameters or
other means.
– For example, a subroutine call

§ Message coupling: modules communicate by message
passing.
– This is the loosest form of coupling

§ No coupling: modules do not communicate with each other.

These degrees were proposed by Myers in Stevens, et. al. (see references)

Copyright 2020, Dennis J. Frailey Software Testing Topics 88

Coupling Measures for OO Designs

§ There are three categories of coupling for a class
– Afferent coupling: The number of responsibilities

– Efferent coupling: The number of dependencies

– Total coupling: Afferent coupling + Efferent coupling

§ And there’s a measure computed from coupling info
– Instability: The ratio of efferent coupling to total coupling

§ Other forms of coupling have been defined
– Different design methodologies may have different forms of

coupling
See Fenton, section 9.4.1 for
further examples and details

Copyright 2020, Dennis J. Frailey Software Testing Topics 89

How to Measure Coupling
(slide 1 of 2)

There are many proposed methods of measuring
coupling, varying somewhat with the kind of

programming and other factors
For procedural languages, Stevens et. al. proposed the
following formula for measuring the coupling of a single
module or method:

– For data and control flow coupling:
§ di = number of input data parameters
§ ci = number of input control parameters
§ do = number of output data parameters
§ co = number of output control parameters

– (continued on next slide)

Copyright 2020, Dennis J. Frailey Software Testing Topics 90

How to Measure Coupling
(slide 2 of 2)

– For global coupling:
§ gd = number of global variables used as data
§ gc = number of global variables used as control

– For external coupling:
§ w = number of modules called (fan-out)
§ r = number of modules calling this one (fan-in)

Formula for coupling:

– 𝑪 = 𝟏 −
𝟏

𝒅𝒊#𝟐𝒄𝒊 #𝒅𝟎#𝟐𝒄𝟎#𝒈𝒅#𝟐𝒈𝒄#𝒘#𝒓

– A large value indicates tight coupling

– Loose coupling -> .5-.7; tight coupling -> .9-1.0

Copyright 2020, Dennis J. Frailey Software Testing Topics 91

Fenton and Melton’s Measure of Coupling1
for a Pair of Modules or Methods

C (x,y) = i + n / (n+1)
– x and y are modules or methods

– n = the number of interconnections between x and y

– i = the level of the tightest coupling between x and y
§ i = 5 for content coupling

§ i = 4 for common coupling

§ i = 3 for control coupling

§ i = 2 for stamp coupling

§ i = 1 for data coupling

§ i = 0 for no coupling 1 Fenton and Melton (see references)

Copyright 2020, Dennis J. Frailey Software Testing Topics 92

Observations on Coupling

There are many studies that suggest tight coupling is
associated with higher cost, higher error rates, and

greater difficulty in developing, testing and maintaining
software

However there are many variations on exactly how to
measure coupling

This is an example of the kind of situation where the engineer
finds something that works and uses it whereas the researcher
spends countless hours trying to define a superior approach.

Advice: always use common sense. Don’t put blind trust in any
measurement that is as imprecise as this one.

Copyright 2020, Dennis J. Frailey Software Testing Topics 93

Use of Coupling in
Real Software Development

§ As a principle of good design, programmers should
always seek to have loose coupling.

§ When coupling is needed, programmers should
always document what modules are affected by any
messages, variables, parameters, etc.

§ Measurements of coupling can help you identify areas
of the code that should be redesigned or refactored
to make them simpler and less coupled, if possible.

§ Identifying the degree and nature of coupling can
help you define more appropriate test approaches.

Copyright 2020, Dennis J. Frailey Software Testing Topics 94

Contents

§ Introduction

§ Some Popular Structure Metrics

Ø Cohesion and Coupling

– Coupling

ØCohesion

§ Measures of Data Flow

Copyright 2020, Dennis J. Frailey Software Testing Topics 95

Cohesion

Cohesion refers to how well the parts of the module or the
methods of a class relate to each other.

– A module/class is cohesive if all of its functions are closely related
to each other.

Cohesion is desirable because it is easier to understand the
module or class if there is a single, unifying theme for what it
does.

– The module or class makes sense as a meaningful unit
– Various functions related to that theme would tend to use the

same terminology, have the same sorts of exceptions, the same
data types, and the same sorts of errors.

Most work on cohesion has been focused on object oriented methods rather
than procedural methods.

Copyright 2020, Dennis J. Frailey Software Testing Topics 96

Evaluating Cohesion

A simple way to judge cohesion is to determine how
succinctly the module can be described.

– A short and precise sentence generally describes a cohesive
module.
§ “This module handles input/output”
§ The above module could easily have a descriptive name, such as

“InputOutputFunctions”

– A longer and less precise sentence suggests a non-cohesive
module.
§ “This module factors the data, performs various services

and handles the I/O”
§ Words such as “various” and “assorted” and “variety” in the

description are typical of non-cohesive modules

Copyright 2020, Dennis J. Frailey Software Testing Topics 97

Example

LOW COHESION
This module or class has two
separate functions or groups
of methods that are unrelated.

HIGHER COHESION
This module or class has

functions or methods that are
strongly related

Copyright 2020, Dennis J. Frailey Software Testing Topics 98

Advantages of Cohesion

§ If you need to replace part of the module or class it
is likely that you will replace most or all of it
– So you can simply replace the whole thing rather than

removing parts of it and leaving other parts alone
– You avoid inadvertently damaging one part while modifying

another part

§ Interfaces to cohesive modules tend to be cleaner
and more coherent

§ High cohesion promotes encapsulation
– Placing of related data and functions into a single component

§ Low cohesion generally means inappropriate design
with high complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics 99

Observations About Cohesion

Generally speaking, high cohesion and low coupling
tend to go together

– But not always

Cohesion of a class may mean that the methods in
that class are strongly coupled, which may make it
harder to test and maintain

– This is a potential drawback, which illustrates why one
should not always insist on high cohesion

Cohesion of a procedure has similar drawbacks
regarding its internal components.

Copyright 2020, Dennis J. Frailey Software Testing Topics 100

How to Measure Cohesion

Various metrics have been proposed, under the name
“Lack of cohesion metric” or LCOM. Most make more
sense for OO software.
LCOM1: This is measured for two methods in a class or
two separate sub-functions of a procedure

Let P = The number of disjoint sets of variables accessed by
the two methods/sub-functions

Let Q = 1 if the two methods/sub-functions access at least one
common variable; otherwise, Q = 0

LCOM1 = P-Q

If P = 0, the methods/sub-functions are cohesive

If P > 0 they are not, and could be separated.

Copyright 2020, Dennis J. Frailey Software Testing Topics 101

Drawbacks of LCOM1

§ Makes more sense for pairs of methods than for
classes

§ Only one value (LCOM1 = 0) is defined for cohesive
situations, which means it doesn’t measure the
“degree of cohesiveness”

§ The definition doesn’t account for certain classes of
global and other shared variables (details vary with
the specific OO methodology being used)

For more on LCOM1 see Chidamber and Kemerer in reference list.

Copyright 2020, Dennis J. Frailey Software Testing Topics 102

LCOM2 and LCOM3
Both measure the degree of cohesion

m = the number of methods in a class or sub-procedures in a procedure

a = the number of variables or attributes in a class or sub-procedure
mA = the number of methods that access a specific variable or attribute

A

Sum(mA) = sum of the mA values for all attributes or variables

LCOM2 = 1 – Sum(mA)/(m*a)
§ This ranges from 0 to 2
§ 0 is good, 1 is not good, 2 is very bad

LCOM3 = (m – Sum(mA)/a) / (m-1)
§ This ranges from 0 to 1
§ 0 is good, 1 is not good see Henderson-Sellers

in reference list.

Copyright 2020, Dennis J. Frailey Software Testing Topics 103

LCOM4
This measures the number of connected components in a
class.

– A connected component is a set of related methods (and class
level variables). Ideally there should be only one connected
component in a class.

§ Two methods are related if:
– They both access the same class-level variable, or
– One of them calls the other one

§ To measure LCOM4, you determine which methods are
related and draw a directed graph, showing the
relationships

We will discuss directed graphs later.

Copyright 2020, Dennis J. Frailey Software Testing Topics 104

Interpreting LCOM4
LCOM4 = 1 means high cohesion

LCOM4 > 1 means lower cohesion

LCOM4 = 0 means a class with no methods

Copyright 2020, Dennis J. Frailey Software Testing Topics 105

Summing Up Cohesion

§ There are many measures of cohesion, including
some we have not discussed
– but none have been universally accepted

§ Cohesion is a good design goal for most software

§ Good cohesion often means low coupling, which is
also a good design goal

§ But measures of cohesion vary in their usefulness,
depending on the design methodology and other
factors
– So use them with caution

Ø Lack of cohesion generally means that testing will be
more difficult

Copyright 2020, Dennis J. Frailey Software Testing Topics 106

Contents

§ Introduction

§ Some Popular Structure Metrics

§ Cohesion and Coupling

– Coupling

– Cohesion

Ø Measures of Data Flow

Copyright 2020, Dennis J. Frailey Software Testing Topics 107

A Fundamental Issue with Data Flow
Measures

IEEE Standard 982.2 defines a series of informational
flow complexity measures

But the software development community has
adopted a number of variations on these

– None of these have been accepted as a standard, because
there are so many variations.

– Many of these depend on the specific methodology or
language being used

We will mention some of the differences

Copyright 2020, Dennis J. Frailey Software Testing Topics 108

Measures of Data Flow

Informational Fan-in (IFIN): Information
flow into a procedure or method

IFIN = PC + PR + GVR
PC = number of procedures calling this one

PR = number of parameters read

GVR = number of global variables read

Informational Fan-in (IFOUT):
Information flow out of a procedure

IFOUT = CP + PR + GVR
CP = number of procedures that this one calls

PW = number of parameters written to [by reference]

GVW = number of global variables written to For more info, see
Henry and Kafura

in reference list

There are several
variations on

exactly what is
counted as

information flow
into or out of a
procedure or

method

Copyright 2020, Dennis J. Frailey Software Testing Topics 109

Additional Measures of Data Flow - IFIO

Informational Fan-in x Fan-Out (IFIO):

IFIO = IFIN * IFOUT

– This is supposedly a good measure of the effort
required for implementing the procedure

– But it is not necessarily a good measure of its
overall complexity
§ i.e., IFIO is not necessarily a good measure of how

hard it is to understand, test or maintain)

Copyright 2020, Dennis J. Frailey Software Testing Topics 110

Additional Measures of Data Flow -
IFC

Informational Flow Complexity (IFC):
IFC = IFIO * IFIO [in other words, IFIO2]

– This is the IEEE standard definition
IC1 = LOC * IFIO [in other words, size * IFIO]

– This is a widely used definition of information flow complexity

Ø Some authors believe that IFC is a good measure of
how hard it is to understand, test or maintain the
software

Copyright 2020, Dennis J. Frailey Software Testing Topics 111

Information Flow Observations

Regardless of how measured, high information flow
complexity is generally not a good thing with most
modules or methods

– Procedures or methods with high information flow
complexity are good candidates for redesign because they
may be hard to understand

– They may require extensive testing

Ø On the other hand, some software may be designed
to intentionally have a method or module
responsible for a large amount of information flow

Copyright 2020, Dennis J. Frailey Software Testing Topics 112

Things You Can Discover from Information
Flow Metrics

§ More than one function is required to implement a
procedure (lots of information flow between the
functions)
– Is there a good reason for this from a design perspective, or is

this a candidate for redesign?

§ Stress points in a system (places where there is a lot of
information traffic)
– This may indicate parts of the software that will have

performance issues

§ Excessive functional complexity
– The difficulty of implementing and testing a function due to the

complexity of what it must accomplish

Copyright 2020, Dennis J. Frailey Software Testing Topics 113

Functional Complexity

§ This is a current research topic
§ See Lavazza and/or Abran in the reference list

Copyright 2020, Dennis J. Frailey Software Testing Topics 114

END OF
Part 4

Copyright 2020, Dennis J. Frailey Software Testing Topics 115

Part 5
Measuring Software Complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics 116

Contents

§ Complexity: what and how to measure

§ Structured Programs and Flowgraph Analysis

§ Measures of Complexity

§ Closing Remarks

Copyright 2020, Dennis J. Frailey Software Testing Topics 117

Contents

Ø Complexity: what and how to measure

§ Structured Programs and Flowgraph Analysis

§ Measures of Complexity

§ Closing Remarks

Copyright 2020, Dennis J. Frailey Software Testing Topics 118

Complexity

We tend to think that complex software is
more difficult to develop, test and maintain
and has greater quality problems.

But what do we mean by complexity?

Dictionary definitions of complex:
1. Composed of many interconnected parts
2. Characterized by a very complicated

arrangement of parts
3. So complicated or intricate as to be hard to

understand

Copyright 2020, Dennis J. Frailey Software Testing Topics 119

Complex vs Complicated
Complicated: being difficult to understand but with time
and effort, ultimately knowable

Complex: having many interactions between a large
number of component entities.

– As the number of entities increases, the number of interactions
between them will increase exponentially

– It can get to a point where it would be impossible to know and
understand all of them.

Hotel-r.net

Copyright 2020, Dennis J. Frailey Software Testing Topics 120

Changing Complex Software
§ Higher levels of complexity in software increase the risk of

unintentionally interfering with interactions and so increase
the chance of introducing defects when making changes.

§ In more extreme cases, complexity can make modifying the
software virtually impossible. Changes introduce more
problems than they fix. This is called inherent instability.

Labs.Sogeti.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 121

Can We Measure Complexity?

Measures of complexity would need to address:
– the parts of the software,
– the interconnections between the parts,
– and the interactions between the parts.

Information Need
– Something that will help us estimate

– difficulty of programming,
– difficulty of testing and maintaining,
– expected level of quality

– Something that will help us evaluate and
improve our software with regard to the above
characteristics

Copyright 2020, Dennis J. Frailey Software Testing Topics 122

How Can We Measure Complexity?

The base measures
would quantify the
attributes of:

– The parts or
components of the
software

– How many parts or
components there are

– The arrangement of
the parts

– The interactions of
the parts

Copyright 2020, Dennis J. Frailey Software Testing Topics 123

Compound Measures

Combining the base measures into calculations that help
us address our information needs, answering questions
such as:

– What aspects of software structure can help forecast
development effort and quality?

– Is my software structure good?

– How should I test my software?

– How can I improve my software structure?

– How much has it improved?

Copyright 2020, Dennis J. Frailey Software Testing Topics 124

What Can We Measure?

We might learn something about the structure and
complexity of software by measuring:

– Requirements
§ Models, use cases, test cases

– Architecture and Design
§ Models, design patterns, structure, control flow, data flow

– The code itself
§ Statements, variables, nesting, control flow, data flow

– The way the code is assembled to produce the final product
§ Load files, use of libraries

Copyright 2020, Dennis J. Frailey Software Testing Topics 125

One Problem Is That There are
Many Systems for Describing

Software Structure

Copyright 2020, Dennis J. Frailey Software Testing Topics 126

Generally Speaking We Measure
Complexity of Systems and of

Components that Make up Systems
We usually start with the architecture of the system

This is the
architecture of a
system defined

using structured
analysis. There are

complexity
measures for the

system and for the
individual

components.

Copyright 2020, Dennis J. Frailey Software Testing Topics 127

With Object Oriented Systems, the Nature of
the Components Varies with the Methodology

This means we must sometimes devise
methodology-specific measures

This is the
architecture of a

system defined using
object oriented

methodology. There
are complexity

measures for the
system and for the

individual
components.

Copyright 2020, Dennis J. Frailey Software Testing Topics 128

Order of Presentation

We will focus on complexity of structured, procedural
software

– Because this is where most of the research has been focused

– Because the results apply to software in many different
languages

– Because most of the results also apply to object oriented
software

From time to time we will mention how the concepts are
applied to object oriented software

Copyright 2020, Dennis J. Frailey Software Testing Topics 129

Fundamentally, the complexity of a system depends
on the number of components and the number of

links between the components of the system

It can be further complicated by the degree to which
the components share common elements (coupling)

System Level Complexity

VS

Copyright 2020, Dennis J. Frailey Software Testing Topics 130

Contents

§ Complexity: what and how to measure

Ø Structured Programs and Flowgraph Analysis

§ Measures of Complexity

§ Closing Remarks

Copyright 2020, Dennis J. Frailey Software Testing Topics 131

Control Flow Captures Major
Complexity-related Attributes

Our intuitive notions of complexity would say that when
there are more parts and more complex ways they

interact, we have more complex software.

vs

Many measures of complexity make use of control flow analysis.

Copyright 2020, Dennis J. Frailey Software Testing Topics 132

Control Flow is Often Modeled with
Directed Graphs

Node

Arc
or

Edge

This could be flow within a
system or within a module

Copyright 2020, Dennis J. Frailey Software Testing Topics 133

In Many Notations, the Shape of the Node
Conveys the Nature of What it Represents
For example, flowcharts:

Copyright 2020, Dennis J. Frailey Software Testing Topics 134

Notation To Be Used Here
(in these slides)

§ Arc or Edge
§ Procedure Node

– A block of code.
Any decisions are
internal to the
block. One exit.

§ Predicate Node
– One that makes a

decision.

§ Start Node

§ Stop Node

D Gor

E Squarish shape,
Exactly one arc leaving

F Round shape, Two or
more arcs leaving

Colors of procedure and
predicate nodes are not part of

the notation.
Colors are used only to clarify
points being made on a slide.

A path between nodes

Copyright 2020, Dennis J. Frailey Software Testing Topics 135

A FlowGraph

A flowgraph is a directed graph with
– One start node, and

– One end node,

Ø that has the following property:
– Every other node lies on a path between the start node

and the end node

Notes:
– This notation works for any procedural programming language
– But not all languages can represent all possible flowgraphs
– Certain common language constructs have readily recognized

flowgraph forms
See later slides or Fenton,

page 379 for some examples.

Copyright 2020, Dennis J. Frailey Software Testing Topics 136

Example: Code, Flowchart, and Flowgraph

Copyright 2020, Dennis J. Frailey Software Testing Topics 137

What is a Structured Program?
A structured program is one constructed out of
three fundamental control structures:

– Sequence (ordered statements and/or subroutines)
§ Examples: A = B+C; D = FUNC(E,F)

– Selection (one or more statements is executed,
depending on the state of the system)
§ Example: If C1 Then <true option> Else <false option>

– Iteration [loop] (a statement or block is executed
until the program has reached a certain state)
§ Examples: While; Repeat; For; Do… Until

Copyright 2020, Dennis J. Frailey Software Testing Topics 138

Structured Program Notation

Blue: NS Diagram notation; Green: Flowchart notation

Sequence Selection Iteration (Loop)

Copyright 2020, Dennis J. Frailey Software Testing Topics 139

These Three are Sufficient to Represent
Any Program

Ø Note: This does not necessarily mean it is the only
way or the best way.

Ø The theorem simply states that it is possible to
represent any function with only the three control
structures.

The structured program theorem, also
known as the Böhm-Jacopini theorem, says
that the class of flowgraphs representing

the three control structures above can
compute any computable function

Copyright 2020, Dennis J. Frailey Software Testing Topics 140

Why Are Structured Programs Important?

Studies have shown that limiting the software to a
small number of well defined control structures has
these benefits:

– Easier to understand
– Less error prone
– Easier to analyze and test
– Easier to measure

1 See References

This started out as a theoretical concept, developed by Edsger Dijkstra and others.

It became more widely known when Dijkstra wrote his famous “Go To Considered
Harmful”1 letter to the editor of Communications of the ACM (in 1968).

Copyright 2020, Dennis J. Frailey Software Testing Topics 141

There May Be More Than One Flowgraph
Representing A Particular Kind of Control Structure

Example: Two flowgraphs for selection

End

A

X

True
False

If A then X
(D0)

Y

End

A

X

True False

If A then X else Y
(D1)

Each of these is also
a “prime” flowgraph,
meaning it cannot be
reduced to a simpler
form. We’ll discuss
this further in later

slides.

Copyright 2020, Dennis J. Frailey Software Testing Topics 142

Two Prime Flowgraphs for Iteration

End

A

X

True
False

While A Do
X

(D2)

End

X

B
True

False

Repeat X
Until B

(D3)

Copyright 2020, Dennis J. Frailey Software Testing Topics 143

Prime Flowgraphs and D Notation

§ A prime flowgraph is one that cannot be reduced (to a
simpler flowgraph).
– D0, D1, D2 and D3 are all prime.
– See discussion of “reduction” in later slides.

§ The D notation is a widely recognized way of denoting
certain standard, prime flowgraphs.

If A then B
(D0)

This is a standard type of flowgraph, known as
a D0 structured flowgraph.

Copyright 2020, Dennis J. Frailey Software Testing Topics 144

The Flowgraphs D0-D3 (and sequencing)
Can Be Used To Represent Any Program

As a result, some define a program to be “structured”
only if it is represented by a combination of these
flowgraphs.

However, there are several additional prime
flowgraphs that represent commonly used language
constructs and that can greatly simplify some
programs.

So different organizations and researchers have
defined additional prime flowgraphs that may be
permitted in “structured” programs.

In other words, every organization defines structured in its own way.

Copyright 2020, Dennis J. Frailey Software Testing Topics 145

Structured Program Flowgraphs:
What Is Common and What Is Not

§ What all structured programs have in common
– Definitions of edges, nodes, etc.
– Built out of the three fundamental constructs: sequence,

selection, and iteration
– It must be possible to reduce a program to a combination of a

selected set, S, of prime flowgraphs

§ What is Different
– Which prime flowgraphs are included in the set S.

See Fenton, section 9.2 for a discussion of flowgraphs and
structure and, in particular, section 9.2.1.2 for a generalized

notion of structuredness.

Copyright 2020, Dennis J. Frailey Software Testing Topics 146

An Example of Why
Additional Prime Flowgraphs are Useful

B

End

A

X

True
False

YX

True False

D

If only D0 and D1 can be used to
represent this code, then we must use
a D1 within another D1 and must show

X twice.
This is the equivalent of rewriting the

source code as shown below.

IF A THEN X
ELSE

IF B THEN X
ELSE Y

IF A or B THEN X
ELSE Y

X must be
duplicated. If
X is a lot of
code this is

inconvenient.

Copyright 2020, Dennis J. Frailey Software Testing Topics 147

D5 Was Introduced To Allow Common
Boolean Selection Decisions

End

A

X

True
False

If A then B
(D0)

Y

End

A

X

True False

If A then B else C
(D1)

X

End

A

B
True

False

Y

False True

If A or B then X
else Y
(D5)

Y

End

A

B

True
False

X

FalseTrue

If A and B then X
else Y
(D5)

Copyright 2020, Dennis J. Frailey Software Testing Topics 148

D4 Was Introduced to Allow Middle-Exit Loops

End

A

X

True
False

While A
Do X
(D2)

End

X

B True

False

Repeat X
Until B

(D3)

End

X

A
True

False

YDo X
Exit when A

Do Y
Repeat

(D4)

Copyright 2020, Dennis J. Frailey Software Testing Topics 149

C Flowgraphs are Prime Flowgraphs
for CASE Statements

x2

End

A

x1

a1

…

ana2

xn

Case A of
A1 : X1
A2 : X2

…
An : Xn
(C1…n)

Note that there are
an arbitrary number
of these, depending

on n – the number of
possible selections.

Note also that these are classified
as “C” structured flowgraphs, not

“D” structured flowgraphs, because,
technically, the CASE statement is
not one of the three fundamental

control structures.

Copyright 2020, Dennis J. Frailey Software Testing Topics 150

L Structured Flowgraphs Represent
Multi-Exit Loops

B

End

X

A
True

False Y
True

False

Do X
Exit when A

Do Y
Exit when B

Repeat
(L2)

A two-exit loop is
shown (L2). This is

commonly used.
However higher
numbers of exits

could be
represented as well.

This also has its own
classification (L) rather than

being considered a D
flowgraph because it is not

one of the three fundamental
control structures.

Copyright 2020, Dennis J. Frailey Software Testing Topics 151

Why Use Flowgraphs to Measure Complexity?

§ Directed Graphs clarify the flow of control between
software elements

§ Many measures of software complexity can be
determined from directed graphs

§ It is fairly easy to represent any program with a
directed graph
– Note that there might be several ways to graph a program, but

they should all have the same measure of complexity if they
are done correctly

Copyright 2020, Dennis J. Frailey Software Testing Topics 152

Combining Flowgraphs

Flowgraphs with a single entry and single exit can be
combined in the following ways:

§ Sequencing: Merging the end node of one flowgraph
with the start node of the other

§ Nesting: Replacing an arc in one flowgraph with the
other flowgraph

Flowgraphs can also be reduced or condensed or
decomposed by reversing the above

§ For example, collapsing a nested flowgraph into a
single node and arc
– This is, conceptually, the equivalent of replacing the nested

flowgraph with a procedure call

Copyright 2020, Dennis J. Frailey Software Testing Topics 153

Sequencing Example

Sequence S1 Sequence S2

Sequence S1 S2

End
A

CB

End
D

FE

G

A

CB

End
D

FE

G

Copyright 2020, Dennis J. Frailey Software Testing Topics 154

Nesting Example

D calls
procedure P

Procedure P

End
D

CB

A End
G

FE

H
P

D

CB
End

G

FE

H

A

Copyright 2020, Dennis J. Frailey Software Testing Topics 155

Reduction Example 1

A End
D

CB

A
D

CB
End

G

FE

H

Procedure P

End
G

FE

H
P

D calls
procedure P

Any single-
entry, single-

exit sub-
graph can be
replaced by a

procedure
call

Copyright 2020, Dennis J. Frailey Software Testing Topics 156

Reduction Example 2

Any sequence
containing no
decisions or

iterations can be
reduced to a
single node

A DCB

A C,DB

A B,C,D

A,B,C,D

Copyright 2020, Dennis J. Frailey Software Testing Topics 157

McCabe Cyclomatic Complexity
The Cyclomatic Complexity (v) of a Module or a System is:

– The number of linearly independent1 paths (basis paths)
through the module or system

– If F is a flowgraph2, then v(F) = e – n + 2
§ Where e is the number of edges (arcs)
§ And n is the number of nodes

– If a system consists of multiple flowgraphs that are not
connected together, the formula becomes:

v(F) = e – n + 2c
§ Where c is the number of separate flowgraphs3

1 To be discussed a little later 2 With one entry and one exit
3 In graph theory these are called connected components

Copyright 2020, Dennis J. Frailey Software Testing Topics 158

Examples of Cyclomatic Complexity

§ Example 1:

Ø v(F) = e – n + 2 = 3 – 4 + 2 = 1

Ø There is only 1 path through the code

§ Example 2:

A DCB

C

E

A

B
True

False

D

False True

Ø v(F) = e – n + 2 =
6 – 5 + 2 = 3

Ø There are 3 paths through
the code:
§ A B D E
§ A B C E
§ A C E

Copyright 2020, Dennis J. Frailey Software Testing Topics 159

Why Is Cyclomatic Complexity Useful?

§ Number of paths indicates maximum number of
separate tests needed to test all paths
– This should relate to the difficulty of testing the program

§ It also indicates the number of decision points in
the program (plus 1)
– This should relate to the difficulty of understanding and

testing the program

Cyclomatic complexity is not a perfect measure of
these things (see Fenton, chapter 9) but it is a fairly

reliable guide.

Copyright 2020, Dennis J. Frailey Software Testing Topics 160

The Higher the Cyclomatic Complexity, the
Harder the Code Is to Maintain

Copyright 2020, Dennis J. Frailey Software Testing Topics 161

What Do We Mean by
Linearly Independent Paths?

The number of linearly independent paths is the
minimum number of end-to-end paths required to touch
every path segment at least once.

– Sometimes the actual number of paths needed to cover the system is
less than this because it may be possible to combine several path
segments in one traversal.

There may be more than one set of linearly independent
paths for a given flowgraph

– This becomes more likely as you get more complex flowgraphs

Determining a set of linearly independent paths is
something you might study in a course on testing or in a
course on graph theory

– It gets harder as the cyclomatic complexity goes up

Copyright 2020, Dennis J. Frailey Software Testing Topics 162

A Graph with Five
Connected Components

The graph above is not a flowgraph by our strict definition,
because it has more than one start and stop node and not all nodes
are connected to any given start or stop node. But it illustrates the
concept of connected components.

This graph has five
separate regions,

which are connected
within themselves,

but not to each other.
Each region is called

a connected
component.

Copyright 2020, Dennis J. Frailey Software Testing Topics 163

Why Would We Care About Graphs
with Many Connected Components?

§ We could measure the cyclomatic complexity of a
system consisting of several separate modules

§ In object oriented systems we could measure the
cyclomatic complexity of a class containing multiple
methods

Copyright 2020, Dennis J. Frailey Software Testing Topics 164

McCabe Essential Complexity

The Essential Complexity (ev) of a Module or a System is:
– The cyclomatic complexity of the fully reduced flowgraph
– Example:

§ ev(F) = 1 because this can be reduced to one node

Ø If the flowgraph is constructed completely of prime
flowgraphs (i.e., it is structured) then the essential
complexity will be 1.

A DCB

Copyright 2020, Dennis J. Frailey Software Testing Topics 165

Some Issues with Essential Complexity
(slide 1 of 2)

Essential complexity is intended to tell us how well
structured a program is.

However
§ As originally defined, the only valid primes were the

four D structured primes: D0, D1, D2, D3

– So if you allow additional primes, do you revise the definition
of essential complexity to include the new primes?

– Do you allow D4 and D5 but nothing else?

– What about the C structured primes and the L structured
primes?

Copyright 2020, Dennis J. Frailey Software Testing Topics 166

Some Issues with Essential Complexity
(slide 2 of 2)

If your program is not “structured” it isn’t clear whether
the essential complexity tells us much beyond that

– Does a larger essential complexity actually mean anything?

– If two programs have the same essential complexity, are they
equally complex?
§ See fig. 9.13 in Fenton for an example
§ He shows two flowgraphs that have the same essential complexity,

but intuitively one of them is a lot more complex and harder to
understand than the other.

Copyright 2020, Dennis J. Frailey Software Testing Topics 167

Contents

§ Complexity: what and how to measure

§ Structured Programs and Flowgraph Analysis

§ Measures of Complexity

Ø Closing Remarks

Copyright 2020, Dennis J. Frailey Software Testing Topics 168

There is No Single Measure of Complexity

§ As we have seen, there are different ways to measure
complexity

§ Research shows that sometimes the attributes of
complexity may conflict
– For example

§ low coupling doesn’t always mean high cohesion
§ low cyclomatic complexity doesn’t always mean easy to

understand
§ structured software may be awkward to produce in languages

without certain constructs

Use complexity measures as guidelines, not as
“magic numbers” that result in rigid requirements

for code.

Copyright 2020, Dennis J. Frailey Software Testing Topics 169

END OF
Part 5

Copyright 2020, Dennis J. Frailey Software Testing Topics 170

Any Questions?

Copyright 2020, Dennis J. Frailey Software Testing Topics 171

End of
Lecture

Copyright 2020, Dennis J. Frailey Software Testing Topics 172

References
Part 3 (1 of 2)

Chatfield, C., Statistics for Technology, A Course in Applied Statistics,
Third Edition, Chapman and Hall, London (1983), ISBN 978-0412253409.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 6.

Hedstrom, John and Dan Watson, “Developing Software Defect
Prediction,” Proceedings, Sixth International Conference on Applications of
Software Measurement, 1995.

Jones, Capers, Applied Software Measurement, McGraw Hill, 1991. ISBN:
0-07-032813-7.

Knuth, Donald, Seminumerical Algorithms: The Art of Computer
Programming, Vol II, Addison-Wesley, 1969. ASIN: B00157WFAU

Copyright 2020, Dennis J. Frailey Software Testing Topics 173

References
Part 3 (2 of 2)

Ott, R.L. and M. T. Longnecker, An Introduction to Statistical Methods
and Data Analysis, 6th Edition, Duxbury Press (2008), ISBN 978-
0495017585.

Snyder, Terry and Ken Shumate, Defect Prevention in Practice (Draft
white paper), Hughes Aircraft Company, October 22, 1993.

Ross, Sheldon M.. Introduction to Probability Models, Academic Press,
1993. Musa, John, Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, McGraw Hill. ISBN: 0-07-913271-5.

Copyright 2020, Dennis J. Frailey Software Testing Topics 174

References
Part 4 (1 of 2)

Abran, A., et. al., “Functional Complexity Measurement”, Proceedings,
IWSM 2001 - International Workshop on Software Measurement.

Chidamber, S. and Chris Kemerer, A Metrics suite for Object Oriented
Design, MIT Sloan School of Management E53-315 (1993).

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 9

Fenton, N. and A. Melton, “Deriving Structurally Based Software
Measures,” Journal of System Software, vol 12 (1990), pp 177-187.

Henry, S. and D. Kafura, “Software Structure Metrics Based on
Information Flow”, IEEE Transactions on Software Engineering, Volume SE-
7, No. 5 (Sept, 1981), pp 510-518.

Copyright 2020, Dennis J. Frailey Software Testing Topics 175

References
Part 4 (2 of 2)

IEEE 9982.2 (1988). IEEE Guide for the Use of IEEE Standard Dictionary
of Measures to Produce Reliable Software, A25. Data of Information Flow
Complexity. P112.

Stevens, W., G. Myers and L. Constantine, “Structured Design”, IBM
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Kitchenham, B. A., “Measuring to Manage”, in Mitchell, Richard J. (editor),
Managing Complexity in Software Engineering, London, Peter Peregrinus,
Ltd. (1990). ISBN 0 86341 171 1

Lavazza, L. and G. Robiolo, “Functional Complexity Measurement:
Proposals and Evaluations”, Proceedings of ICSEA 2011: the Sixth
International Conference on Software Engineering Advances.

Copyright 2020, Dennis J. Frailey Software Testing Topics 176

References
Part 5

Dijkstra, Edsger, “GO TO Considered Harmful”, letter to the editor of
Communications of the ACM, March, 1968.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 9

Fenton, N. and A. Melton, “Deriving Structurally Based Software
Measures,” Journal of System Software, vol 12 (1990), pp 177-187.

McCabe, Thomas, “A complexity measure,” IEEE Transactions on Software
Engineering, vol SE-2, issue 4 (December, 1976), pp 308-320.

Stevens, W., G. Myers and L. Constantine, “Structured Design”, IBM
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Copyright 2020, Dennis J. Frailey Software Testing Topics 177

Exercise

Given a Program, Determine its Flowgraph and
its Cyclomatic Complexity

